способ определения потребления энергии в цепях переменного тока и устройство для его осуществления
Классы МПК: | G01R21/133 с использованием цифровой техники |
Автор(ы): | Заславский Александр Михайлович (UA), Ходак Илья Яковлевич (UA), Ружников Евгений Владимирович (UA), Войцешко Юрий Васильевич (UA), Ганопольский Михаил Исаакович (UA), Лисняк Александр Григорьевич (UA), Клименко Владимир Николаевич (UA), Клисенко Сергей Владимирович (UA) |
Патентообладатель(и): | Заславский Александр Михайлович (UA), Ганопольский Михаил Исаакович (UA), Лисняк Александр Григорьевич (UA), Клименко Владимир Николаевич (UA) |
Приоритеты: |
подача заявки:
1998-06-10 публикация патента:
27.12.1999 |
Способ предполагает осуществление двух последовательностей выборок мгновенных значений токов и напряжений в исследуемой цепи, прямой и обратной, периодически сменяющих друг друга. Мгновенные значения токов и напряжений преобразовывают в цифровые сигналы, запоминают и вычисляют мгновенные значения мощности с последующим усреднением в течение заданного интервала времени по расчетным формулам. Устройство для осуществления способа содержит датчики тока и напряжения, выходы которых подключены к аналоговым входам аналогового коммутирующего мультиплексора, выход которого соединен с входом аналого-цифрового преобразователя, выход которого подключен к входу процессора, регистр четности выборок, имеющий прямую и обратную связь с процессором и подключенный своим выходом к адресному входу аналогового коммутирующего мультиплексора, измеритель частоты, соединенный своим входом с выходом датчика напряжения, а выходом - с входом процессора. Техническим результатом является повышение точности измерения потребления энергии. 2 с. и 3 з.п. ф-лы, 3 ил., 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
1. Способ определения потребления энергии в цепях переменного тока, включающий поочередную выборку через заданные интервалы времени мгновенных значений тока и напряжения в исследуемой цепи, преобразование выборок в цифровые сигналы, пропорциональные выбранным значениям, запоминание полученных цифровых сигналов, вычисление мгновенных значений мощности с последующим усреднением в течение заданного интервала времени, отличающийся тем, что последовательность выборки мгновенных значений тока и напряжения периодически изменяют на обратную, а потребление энергии определяют по формуламгде Wа - потребление активной энергии;
Wр - потребление реактивной энергии;
K - масштабный коэффициент;
t - период изменения последовательности выборки;
= 2n-1 - номера нечетных выборок тока и напряжения;
u(t) - мгновенные значения напряжения;
t - моменты времени нечетных выборок тока и напряжения;
i(t) - мгновенные значения тока;
- интервал времени между выборками тока и напряжения;
= 2n - номера четных выборок тока и напряжения;
t - моменты времени четных выборок тока и напряжения;
w - угловая частота переменного тока. 2. Способ по п. 1, отличающийся тем, что последовательность выборки мгновенных значений тока и напряжения изменяют на обратную четное число раз. 3. Способ по п.1, отличающийся тем, что интервал времени между выборками тока и напряжения настраивают с учетом коэффициентов нелинейных искажений и номера наивысшей гармоники в исследуемой цепи так, чтобы погрешности определения потребления активной и реактивной энергий не превышали допустимых в соответствии с неравенствами
где - номер наивысшей гармоники в исследуемой цепи;
Kниа - относительная погрешность определения активной энергии;
a доп - коэффициент нелинейных искажений активной мощности;
a доп - допустимая относительная погрешность определения активной энергии;
p - относительная погрешность определения реактивной энергии;
Kнир - коэффициент нелинейных искажений реактивной мощности;
p доп - допустимая относительная погрешность определения реактивной энергии. 4. Устройство для осуществления способа по п.1, содержащее датчики тока и напряжения, выходы которых подключены к аналоговым входам аналогового коммутирующего мультиплексора, выход которого соединен с входом аналого-цифрового преобразователя, выход которого подключен к входу процессора, отличающееся тем, что оно дополнительно содержит регистр четности выборок и измеритель частоты, причем регистр четности выборок имеет прямую и обратную связь с процессором, а его выход подключен к адресному входу аналогового коммутирующего мультиплексора, вход измерителя частоты соединен с выходом датчика напряжения, а выход - с входом процессора. 5. Устройство по п.4 для осуществления способа по п.1, отличающееся тем, что регистр четности выборок включает реверсивный счетчик, два дешифратора и RS-триггер, при этом вход реверсивного счетчика соединен с выходом процессора и RS-триггера, а выход - с адресным входом аналогового коммутирующего мультиплексора и входами дешифраторов, выходы которых подключены к входам RS-триггера, а выход RS-триггера - к входу процессора.
Описание изобретения к патенту
Изобретение относится к измерительной технике и может быть использовано для определения потребления энергии в цепях переменного тока с периодическим характером изменения тока и напряжения. Известен способ определения потребления энергии в цепях переменного тока [1]. Способ предусматривает одновременную выборку мгновенных значений тока и напряжения в исследуемой цепи, которую периодически повторяют через интервал времени, соответствующий углу фазового сдвига 90o, преобразование выборок в цифровые сигналы, пропорциональные выбранным мгновенным значениям тока и напряжения, запоминание этих сигналов и вычисление мгновенных значений мощности. Для определения потребления энергии полученные значения мощности усредняются в течение заданного интервала времени. Основными недостатками данного способа являются низкое быстродействие, так как наименьшее время измерения энергии составляет 1/4 периода входного сигнала, и низкая точность, так как в течение периода входного сигнала производится всего по четыре выборки значений тока и напряжения. Кроме того, при определении потребления энергии в многофазных цепях замеры мгновенных значений токов и соответствующих им напряжений требуется производить одновременно во всех цепях, что усложняет реализацию способа. Устройство для осуществления данного способа содержит датчики тока и напряжения, подключенные ко входам аналого-цифровых преобразователей, соединенных через мультиплексор и операционный блок с процессором. Кроме этого, к блоку управления подключены генератор опорной частоты, ключ и интегратор [1]. Выборки мгновенных значений тока и напряжения датчики подают на аналого-цифровые преобразователи, преобразующие их в цифровые сигналы. Сигналы обрабатывают в процессоре, после чего в операционном блоке вычисляют мгновенные значения мощности и усредняют их в интеграторе для получения суммарного потребления энергии в исследуемой цепи в течение заданного интервала времени. Основным недостатком известного устройства является то, что для определения потребления энергии в многофазных цепях согласно известному способу [1], предусматривающему одновременное проведение замеров мгновенных значений тока и напряжения во всех исследуемых цепях, требуется количество аналого-цифровых преобразователей, равное количеству исследуемых цепей, что усложняет алгоритм вычислений и схему управления. Следствием этого является снижение быстродействия и надежности. Известен способ определения потребления энергии в цепях переменного тока [2]. Данный способ является наиболее близким к заявляемому по совокупности существенных признаков и выбран в качестве прототипа. Прототип, аналогично заявляемому изобретению, включает поочередную выборку через определенные интервалы времени мгновенных значений тока и напряжения в исследуемой цепи, преобразование выборок в цифровые сигналы, пропорциональные выбранным значениям, занесение их в память и вычисление мгновенных значений мощности с последующим усреднением в течение заданного интервала времени. В отличие от заявляемого технического решения в известном способе сигнал напряжения рассматривают как синусоиду, интегрируют и определяют максимум. Напряжение, соответствующее моменту измерения сигнала тока, вычисляют путем интерполяции по синусоидальной кривой, полученной при интегрировании. Возможность поочередной выборки мгновенных значений тока и напряжения упрощает процедуру реализации известного способа, вместе с тем, для компенсации погрешности измерений, возникающей вследствие неодновременности выборки, необходимо производить сложные вычислительные операции, что снижает быстродействие и точность. Помимо этого, в прототипе отсутствуют процедуры, компенсирующие погрешность, возникающую из-за наличия постоянных составляющих в измеренных сигналах тока и напряжения, а также процедуры настройки интервала времени между выборками тока и напряжения с учетом нелинейных искажений в исследуемой цепи, что отрицательно влияет на точность определения потребления энергии. Для реализации прототипа используется устройство, содержащее аналогично заявляемому датчики тока и напряжения, выходы которых подключены ко входу аналогового коммутирующего мультиплексора, соединенного через аналого-цифровой преобразователь с процессором. К процессору также подключены запоминающее устройство и операционный блок [2]. Устройство [2] является наиболее близким к заявляемому по совокупности существенных признаков и выбрано в качестве прототипа. Датчики осуществляют выборку мгновенных значений тока и напряжения в исследуемой цепи. Аналоговый коммутирующий мультиплексор, подключенный к выходам датчиков, задает последовательность выборки, интервал времени между выборками и подает аналоговые сигналы на вход аналого-цифрового преобразователя, где они преобразуются в цифровые сигналы, пропорциональные выбранным значениям тока и напряжения. Процессор считывает и обрабатывает выходные данные аналого-цифрового преобразователя и передает их в запоминающее устройство, после чего в операционном блоке вычисляют мгновенные значения мощности и определяют потребление энергии путем усреднения мгновенных значений мощности в течение заданного интервала времени. Наличие в прототипе аналогового коммутирующего мультиплексора позволяет поочередно осуществлять выборки мгновенных значений тока и напряжения во всех исследуемых цепях, что делает достаточным включение в схему устройства одного аналого-цифрового преобразователя даже в случае определения потребления энергии в многофазных цепях. Однако, в известном устройстве отсутствуют узлы, необходимые для определения потребления энергии в цепях переменного тока с нелинейными искажениями. Кроме того, недостатком известного устройства является наличие сложного узла (быстродействующего операционного блока), осуществляющего компенсацию погрешностей, возникающих из-за неодновременного считывания сигналов тока и напряжения. В основу изобретения поставлена задача усовершенствовать способ определения потребления энергии в цепях переменного тока путем введения процедуры изменения последовательности выборки, учета постоянных составляющих сигналов тока и напряжения и настройки интервала времени между выборками тока и напряжения, что позволит повысить точность определения потребления энергии, а также усовершенствовать устройство для осуществления указанного способа за счет включения в него узлов, управляющих последовательностью выборки и задающих исходные данные для компенсации погрешностей, возникающих из-за неодновременного считывания сигналов тока и напряжения, что позволит повысить точность определения потребления энергии. Поставленная задача решается тем, что в способе определения потребления энергии в цепях переменного тока, включающем поочередную выборку через заданные интервалы времени мгновенных значений тока и напряжения в исследуемой цепи, преобразование выборок в цифровые сигналы, пропорциональные выбранным значениям, запоминание полученных цифровых сигналов, вычисление мгновенных значений мощности с последующим усреднением в течение заданного интервала времени, согласно изобретению последовательность выборки мгновенных значений тока и напряжения периодически изменяют на обратную, а потребление энергии определяют по формулам:где Wа - потребление активной энергии;
Wр - потребление реактивной энергии;
K - масштабный коэффициент;
t - период изменения последовательности выборки;
= 2n-1 - номера нечетных выборок тока и напряжения;
u(t) - мгновенные значения напряжения;
t - моменты времени нечетных выборок тока и напряжения;
i(t) - мгновенные значения тока;
- интервал времени между выборками тока и напряжения;
= 2n - номера четных выборок тока и напряжения;
t - моменты времени четных выборок тока и напряжения;
W - угловая частота переменного тока,
при этом последовательность выборки мгновенных значений тока и напряжения изменяют на обратную четное число раз. Помимо этого, интервал времени между выборками тока и напряжения настраивают с учетом коэффициентов нелинейных искажений и номера наивысшей гармоники в исследуемой цепи так, чтобы погрешности определения потребления активной и реактивной энергий не превышали допустимых значений в соответствии с неравенствами:
w < /2; (4)
где - номер наивысшей гармоники в исследуемой цепи;
a - относительная погрешность определения потребления активной энергии;
Kниа - коэффициент нелинейных искажений по активной мощности;
a доп - допустимая относительная погрешность определения потребления активной энергии;
p - относительная погрешность определения потребления реактивной энергии;
Kнир - коэффициент нелинейных искажений по реактивной мощности;
p доп - допустимая относительная погрешность определения потребления реактивной энергии. Кроме этого, в устройство для осуществления указанного выше способа, содержащее датчики тока и напряжения, выходы которых подключены к аналоговым входам аналогового коммутирующего мультиплексора, выход которого соединен со входом аналого-цифрового преобразователя, выход которого подключен ко входу процессора, согласно изобретению вводятся регистр четности выборок и измеритель частоты, причем регистр четности выборок имеет прямую и обратную связь с процессором, а его выход подключен к адресному входу аналогового коммутирующего мультиплексора, вход измерителя частоты соединен с выходом датчика напряжения, а выход с входом процессора, а регистр четности выборок включает реверсивный счетчик, два дешифратора и RS-триггер, при этом вход реверсивного счетчика соединен с выходом процессора и RS-триггера, а выход - с адресным входом аналогового коммутирующего мультиплексора и выходами дешифраторов, выходы которых подключены к входам RS-триггера, а выход RS-триггера - к входу процессора. На фиг. 1 и 2 графически отображена последовательность выборки мгновенных значений тока и напряжения, реализуемая соответственно прототипом и заявляемым способом. При этом наличие интервала времени между выборками тока и напряжения вносит дополнительную погрешность при определении потребления энергии. Величина этой погрешности эквивалентна фазовому сдвигу, создаваемому неучтенным импедансом в исследуемой цепи. В предлагаемом изобретении для компенсации этой погрешности предлагается периодически изменять последовательность выборки мгновенных значений тока и напряжения на обратную (фиг. 2). В этом случае всю совокупность выборок можно разбить на две последовательности - прямую и обратную. Выборки прямой последовательности отмечены точками, а выборки обратной последовательности - крестиками на кривых тока и напряжения. Как видно из фиг. 2, изменение последовательности выборок эквивалентно чередованию положительных и отрицательных углов сдвига между соседними мгновенными значениями тока и напряжения. Осуществляя предельный переход t _ 0, n _ в выражениях (1) и (2), получим:
где t1 и t2 - начальный и конечный моменты времени выборки на интервале времени усреднения. Раскладывая функции u(t), i(t) в ряды Фурье на промежутке (-к, +к) c учетом ортогональности системы тригонометрических функций, получим:
где T = t2 - t1 - величина интервала усреднения;
m - номер гармоники;
Pm - истинная активная мощность m-й гармоники на интервале усреднения;
Qm - истинная реактивная мощность m-й гармоники на интервале усреднения. Так как Sin x = - Sin(-x), Cos x = Cos(-x), то выражения (9) и (10) приводятся к виду:
Последние выражения можно преобразовать к виду:
В реальных электрических цепях энергетический спектр ограничен гармоникой с номером , коэффициенты нелинейных искажений по активной Kниа по реактивной Kнир мощностям также ограничены требованиями к качеству электроэнергии
Интервал времени между замерами токов и напряжений настраивается так, чтобы при определении энергии в исследуемой цепи учитывались все гармоники до включительно w < /2. (4)
Следовательно, с ограниченной точностью вторыми слагаемыми в формулах (13) и (14) можно пренебречь:
При этом относительные погрешности a и p не превысят
Таким образом, определенные по формулам (1) и (2) значения энергии равны истинным с точностью, определяемой неравенствами (5), (6):
где Wа - истинное значение потребления активной энергии;
Wр - истинное значение потребления реактивной энергии. Таким образом, потребление энергии, определенное согласно заявляемому способу, соответствует истинной величине потребления энергии в цепи. Изменение последовательности выборки мгновенных значений тока и напряжения на обратную четное число раз позволяет исключить погрешность, обусловленную наличием непарного слагаемого в выражениях (1) и (2), что способствует повышению точности определения потребления энергии. В частных случаях, при наличии помех в измерительных каналах, для компенсации незначительных погрешностей, обусловленных смещением средних значений тока и напряжения, потребление активной энергии Wna может определяться по формуле:
Наличие в заявляемом устройстве для осуществления предложенного способа регистра четности выборок позволяет осуществлять изменение последовательности выборки мгновенных значений тока и напряжения на обратную. Выход регистра четности выборок подключен ко входу аналогового коммутирующего мультиплексора, задающего последовательность выборки. Регистр четности выборок имеет также прямую и обратную связь с процессором, подающим на его вход импульсные управляющие сигналы. В свою очередь, с выхода регистра четности выборок на вход процессора поступают данные о количестве четных и нечетных выборок. Измеритель частоты снимает с выхода датчика напряжения сигнал напряжения, преобразует его и передает в центральный процессор, который определяет угловую частоту переменного тока, являющуюся исходной величиной для определения потребления энергии. Пример конкретного исполнения заявляемого устройства представлен на фиг. 3. Устройство содержит датчики тока 1 и напряжения 2. Их выходы подключены к входу аналогового коммутирующего мультиплексора 3, выход которого подключен ко входу аналого-цифрового преобразователя 4, выход которого, в свою очередь, подключен к входу процессора 5. Процессор 5 имеет прямую и обратную связь с регистром четности выборок 6, включающим реверсивный счетчик 7, дешифраторы первого и второго переключающих адресов 8 и 9 соответственно и RS-триггер 10. Импульсивный вход реверсивного счетчика 7 соединен с выходом процессора 5, а выход, кодирующий адрес измерительного канала, с адресным входом мультиплексора 3 и со входами дешифраторов 8 и 9, выходы которых, в свою очередь, подключены к парафазным входам RS-триггера 10, соединенного своим выходом с управляющими входами счетчика 7 и процессора 5. Вход измерителя частоты 11 подключен к выходу датчика напряжения 2, а выход - ко входу процессора 5. Заявляемый способ осуществляется следующим образом. Через заданные интервалы времени процессор 5 вырабатывает импульсный сигнал на своем выходе. Реверсивный счетчик 7 суммирует или вычитает эти сигналы в зависимости от уровня 1/ сигнала на его управляющем входе. Счетчик 7 имеет 2n+2 устойчивых состояния, два из которых, соответствующие адресам "" и "2n+1", не отображаются ни в один из адресов 1, 2, 3,., 2n измерительных каналов. Адреса "" и "2n+1" распознаются соответственно дешифраторами 8 и 9. При распознавании дешифратором соответствующего адреса на его выходе появляется сигнал, изменяющий состояние и выход RS-триггера 10 на противоположные. При этом счетчик 7 изменяет направление счета импульсов на противоположное. Этим достигается периодическое изменение последовательности выборки мгновенных значений тока и напряжения на обратную. Сигнал с выхода RS-триггера подается на вход процессора 5, где задается согласно уровню сигнала "1" или "" знак "+" или "-" при вычислении реактивной энергии. Датчики тока 1 и напряжения 2 через интервалы времени, задаваемые процессором 5, осуществляют выборку мгновенных значений тока и напряжения в исследуемой цепи. Аналоговый коммутирующий мультиплексор 3, получающий управляющие сигналы реверсивного счетчика 7, задает последовательность выборки и подает аналоговые сигналы на вход аналого-цифрового преобразователя 4, где они преобразуются в цифровые сигналы, пропорциональные выбранным значениям тока и напряжения. Выходные сигналы аналого-цифрового преобразователя 4 и измерителя частоты 11 считываются, обрабатываются и заносятся во внутреннюю память процессором 5, который производит вычисление потребления энергии в соответствии с заявляемым способом. С помощью персонального компьютера была создана модель устройства, реализующего заявляемый способ со следующими параметрами:
схема исследуемой цепи - трехфазная четырехпроводная;
режим нагрузки - симметричный;
частота переменного тока в цепи, Гц - 50;
интервал времени между выборками тока и напряжения, , мкс - 30;
период изменения последовательности выборки, t, мс - 2,5. Величины относительных погрешностей при сравнении результатов вычислений, полученных с использованием модели и рассчитанных аналитически в цепях синусоидальных и несинусоидальных токов и напряжений, представлены в таблице. Результаты цифрового моделирования заявляемого способа подтверждают, что с увеличением интервала усреднения погрешность определения энергии стремится к нулю. Источники информации:
1. Патент России N 2039358, G 01 R 21/06, 09.07.95. 2. Акцептованная заявка Японии N 5075269, G 01 R 21/133, 20.10.93.
Класс G01R21/133 с использованием цифровой техники