способ получения продукта, содержащего диметиловый эфир, до 20% по массе метанола и до 20% по массе воды

Классы МПК:C07C43/04 насыщенные
C07C41/01 получение простых эфиров
C07C41/09 дегидратацией соединений, содержащих окси группы
C07C41/42 перегонкой
Автор(ы):, ,
Патентообладатель(и):Хальдор Топсеэ А/С (DK)
Приоритеты:
подача заявки:
1996-01-29
публикация патента:

Описывается способ получения продукта, содержащий диметиловый эфир, до 20% по массе метанола и до 20% по массе воды, эффективного в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия, включающий контактирование синтез-газа в одном или более реакторах с катализатором, проявляющим активность как при синтезе метанола, так и при дегидратации метанола, с последующим выделением указанной смеси из образовавшейся газовой технологической смеси диметилового эфира, метанола и воды, который заключается в том, что газовую технологическую смесь охлаждают с получением жидкой фазы, содержащей метанол, диметиловый эфир и воду, и газообразной фазы, содержащей непревращенный синтез-газ и часть полученного диметилового эфира, затем жидкую фазу пропускают через первую дистилляционную установку с отгонкой легкой фракции, содержащей диметиловый эфир и метанол, и удалением остатка после разгонки, содержащего метанол и воду, остаток после разгонки пропускают через вторую дистилляционную установку с отгонкой содержащего метанол потока, последний используют для промывки газообразной фазы в установке для очистки промывкой, затем поток диметилового эфира и метанола из установки для промывки направляют в реактор для каталитической дегидратации метанола в диметиловый эфир и воду в присутствии катализатора дегидратации, продукт дегидратации, содержащий диметиловый эфир, воду и непревращенный метанол, выводят из реактора, охлаждают и объединяют с легкой фракцией первой дистилляционной установки и получают содержащий диметиловый эфир продукт, применяемый в качестве топлива. Технический результат - получение целевого продукта, эффективного в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия. 1 з.п. ф-лы, 1 ил. 5 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

Формула изобретения

1. Способ получения продукта, содержащего диметиловый эфир, до 20% по массе метанола и до 20% по массе воды, эффективного в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия, включающий контактирование синтез-газа в одном или более реакторах с катализатором, проявляющим активность как при синтезе метанола, так и при дегидратации метанола, с последующим выделением указанной смеси из образовавшейся газовой технологической смеси диметилового эфира, метанола и воды, отличающийся тем, что газовую технологическую смесь охлаждают с получением жидкой фазы, содержащей метанол, диметиловый эфир и воду, и газообразной фазы, содержащей непревращенный синтез-газ и часть полученного диметилового эфира, затем жидкую фазу пропускают через первую дистилляционную установку с отгонкой легкой фракции, содержащей диметиловый эфир и метанол, и удалением остатка после разгонки, содержащего метанол и воду, остаток после разгонки пропускают через вторую дистилляционную установку с отгонкой содержащего метанол потока, последний используют для промывки газообразной фазы в установке для очистки промывкой, затем поток диметилового эфира и метанола из установки для промывки направляют в реактор для каталитической дегидратации метанола в диметиловый эфир и воду в присутствии катализатора дегидратации, продукт дегидратации, содержащий диметиловый эфир, воду и непревращенный метанол, выводят из реактора, охлаждают и объединяют с легкой фракцией первой дистилляционной установки и получают содержащий диметиловый эфир продукт, применяемый в качестве топлива.

2. Способ по п.1, отличающийся тем, что часть газообразной фазы рециркулируют в реакторы превращения синтез-газа.

Описание изобретения к патенту

Изобретение относится к технологии производства пригодного в качестве топлива продукта на основе диметилового эфира, более конкретно к способу получения продукта, содержащему диметиловый эфир, до 20% по массе метанола и до 20% по массе воды, который можно применять в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия.

Недавние исследования показали, что продукты, содержащие диметиловый эфир, до 20% по массе метанрола и до 20% по массе воды, эффективны в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия (Fleisch Т., McCarthz С., Basu A., Udovich С., Charbonneau P., Slodowske W., Mikkelsen S. E., McCandless D., Новая чистая дизельная технология, Международный Конгресс и Выставка, Детройт, Мичиган, 27 февраля - 2 марта 1995 г.).

Известен способ получения метанола, диметилового эфира или их смеси, которые могут быть использованы в качестве топлива, заключающийся в контактировании синтез-газа с катализатором, обладающим свойством синтеза метанола и дегидратации последнего в диметиловый эфир, разделении полученной смеси на жидкие и газообразные продукты и выделении целевого продукта, который содержит еще воду и непрореагированные компоненты синтез-газа (см., например, US N 5 254 596, C 07 С 27/06, 1993 г.).

Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ получения продукта, содержащего диметиловый эфир, метанол и воду, который может быть использован в качестве топлива, заключающийся в контактировании синтез-газа в одном или более реакторах с катализатором, проявляющим активность как при синтезе метанола, так и при дегидратации метанола, и последующем выделении указанной смеси из образовавшейся газовой технологической смеси диметилового эфира, метанола и воды (см. заявку EP N 0 409 086, C 07 C 43/04, 1991).

Известные способы не позволяют получить продукт, эффективный в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия.

Задачей изобретения является разработка способа получения продукта, содержащего диметиловый эфир, до 20% по массе метанола и до 20% по массе воды, эффективного в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия.

Поставленная задача решается в предлагаемом способе получения продукта, содержащего диметиловый эфир, до 20% по массе метанола и до 20% по массе воды, эффективного в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия, включающем контактирование синтез-газа в одном или более реакторах с катализатором, проявляющим активность как при синтезе метанола, так и при дегидратации менанола, с последующим выделением указанной смеси из образовавшейся газовой технологической смеси диметилового эфира, метанола и воды, за счет того, что газовую технологическую смесь охлаждают с получением жидкой фазы, содержащей метанол, диметиловый эфир и воду, и газообразной фазы, содержащей непревращенный синтез-газ и часть полученного диметилового эфира, затем жидкую фазу пропускают через первую дистилляционную установку с отгонкой легкой фракции, содержащей диметиловый эфир и метанол, и удалением остатка после разгонки, содержащего метанол и воду, остаток после разгонки пропускают через вторую дистилляционную установку с отгонкой содержащего метанол потока, последний используют для промывки газообразной фазы в установке для очистки промывкой, затем поток диметилового эфира и метанола из установки для промывки направляют в ректор для каталитической дегидратации метанола в диметиловый эфир и воду в присутствии катализатора дегидратации, продукт дегидратации, содержащий диметиловый эфир, воду и непревращенный метанол, выводят из реактора, охлаждают и объединяют с легкой фракцией первой дистилляционной установки и получают содержащий диметиловый эфир продукт, применяемый в качестве топлива.

Часть газообразной фазы можно рециркулировать в реакторы превращения синтез-газа.

Подходящие катализаторы для использования на стадии превращения синтез-газа включают обычно применяемые для синтеза катализаторы, как, например, катализаторы на основе меди, цинка и/или хрома, и катализаторы для дегидратации метанола, которые обычно включают окись алюминия или алюмосиликаты в качестве активных компонентов.

Катализаторы могут быть загружены в ректор для получения диметилового эфира (далее: ДМЭ) в виде физической смеси или в виде слоистой основы с чередующимися частицами катализатора для синтеза метанола и для дегидратации метанола. Использование физических смесей катализаторов приводит, однако, к более низкой селективности и образованию побочных продуктов, в основном, высших спиртов и углеводородов. Таким образом, предпочтительно использовать каталитические составы в виде неподвижного слоя, обладающие комбинированной активностью при образовании метанола, изменении соотношения окиси углерода и водорода в водном газе и дегидратации метанола. Такие катализаторы могут быть получены, например, при соосаждении каталитически активных веществ согласно широко известным способам приготовления катализаторов.

Проведение предлагаемого способа поясняется со ссылкой на приложенный чертеж, представляющий собой техническую схему процесса в соответствии с предпочтительным вариантом осуществления изобретения. Технологическая схема упрощена, и многие общепринятые элементы, как, например, теплообменные и охлаждающие установки, не показаны.

Поток 1 синтез-газа превращается в системе для синтеза (реакторы 2 для синтеза метанола/ДМЭ), которая может включать ряд адиабатических реакторов, загруженных комбинированным катализатором для получения метанола/ДМЭ, состоящим из торгового катализатора на основе окислов меди и цинка и торгового катализатора на основе окиси алюминия, и приспособления для косвенного охлаждения между реакторами или охлаждаемый реактор для малых производственных мощностей.

Свежий синтез-газ смешивается с потоком 3 рециркулируемого газа, отделенным от технологического потока, покидающего систему для синтеза.

Синтез-газ предварительно до введения в первый реактор нагревают в теплообменнике для подаваемого потока исходного сырья.

В системе для синтеза синтез-газ превращается в технологическую газовую смесь ДМЭ, метанола и воды в соответствии со следующими реакциями (1) - (3).

CO2 + 3H2 способ получения продукта, содержащего диметиловый эфир, до   20% по массе метанола и до 20% по массе воды, патент № 2144912способ получения продукта, содержащего диметиловый эфир, до   20% по массе метанола и до 20% по массе воды, патент № 2144912 CH3OH + H2O; (1)

2CH3OH способ получения продукта, содержащего диметиловый эфир, до   20% по массе метанола и до 20% по массе воды, патент № 2144912способ получения продукта, содержащего диметиловый эфир, до   20% по массе метанола и до 20% по массе воды, патент № 2144912 CH3-O-CH3 + H2O; (2)

CO + H2O способ получения продукта, содержащего диметиловый эфир, до   20% по массе метанола и до 20% по массе воды, патент № 2144912способ получения продукта, содержащего диметиловый эфир, до   20% по массе метанола и до 20% по массе воды, патент № 2144912 CO2 + H2. (3)

Суммарная реакция экзотермична, и тепло реакции удаляется в промежуточных холодильниках, расположенных между реакторами. Газовая технологическая смесь из реакторов, входящих в систему, охлаждается и разделяется в сепараторе 4 на потоки газообразной 5 и жидкой 6 технологической фазы соответственно.

Поток 5 газообразной фазы, содержащей непревращенный синтез-газ, разделяется на поток 3 рециркулируемого газа и поток 7, направляемый в установку 8 для очистки промывкой. Из-за низкой конденсируемости ДМЭ в газовой технологической смеси направляемый на очистку газовый поток 7 содержит еще ДМЭ, который извлекается путем промывки с помощью рециркулируемого по линии 9 метанола, отводимого из установки 10 для дистилляции метанола на конечной стадии очистки в предлагаемом способе.

Вытекающий из установки 8 поток 11, содержащий полученный ДМЭ, затем подается в реактор 12 для дегидратации метанола, содержащий неподвижный слой торгового катализатора на основе окиси алюминия. Метанол в вытекающем потоке продукта превращается при контакте с катализатором дегидратации в ДМЭ по реакции (2), проходящей в ректоре, из которого по линии 13 отводят дегидратированный продукт, представляющий ДМЭ, метанол и воду.

Поток 6 жидкой технологической фазы подают в установку 14 для дистилляции ДМЭ. Отгоняющийся поток 15 с содержащей ДМЭ легкой фракцией продукта после выхода из колонны 14 объединяют с потоком 13, представляющим дегидратированный продукт, в поток 16, представляющий ДМЭ, применяемый в качестве топлива.

Метанол и воду, отделенные от жидкого технологического потока, после отвода из установки 14 для дистилляции ДМЭ в виде потока 17, представляющего собой остаток от разгонки, подвергают дальнейшей перегонке в установке 10 для дистилляции метанола, из которой отгоняющийся поток 9 легкой фракции отделенного метанола возвращают в установку 8 для очистки промывкой, как описано выше.

Фактический состав конечного потока 16, представляющего собой ДМЭ, регулируется и определяется главным образом технологическими параметрами, используемыми в системе синтеза ДМЭ.

Результаты, полученные при инженерных расчетах описанного выше процесса, приведены ниже в таблицах. Номера потоков продукта в таблицах соответствуют позициям, приведенным на чертеже.

Поток под номером 18 в таблицах 1 и 2 относится к представляющему собой ДМЭ потоку продукта, полученного аналогичным способом, за исключением того, что поток 11 из установки 8 для очистки промывкой не подвергается дегидратации в реакторе 12 для дегидратации. Поток 18, представляющий ДМЭ, получают, таким образом, при прямом объединении потока 11 с потоком 15 отгоняемой легкой фракции продукта. Промывной агент, применяемый в установке 8, отводят по линии 19.

При расчете использовали два различных состава синтез-газа (поток 1), приводящих к двум продуктам, представляющим ДМЭ, применяемый в качестве топлива, с различным содержанием метанола и воды, как явствует из таблиц 1, 2.

Как очевидно из результатов, приведенных в таблицах 1, 2, содержание метанола в продуктах с ДМЭ (поток 18), полученных по способу без использования реактора для дегидратации, выходит за рамки диапазона заявляемых концентраций, и такие продукты с ДМЭ не могут применяться в качестве топлива без дальнейшей ректификации.

Пример.

Этот пример иллюстрирует со ссылкой на чертеж получение применяемого в качестве топлива ДМЭ в полузаводском масштабе.

На пилотной установке, включающей не показанную на чертеже секцию предварительного нагрева подаваемого газа, охлаждаемый реактор для синтеза метанола/ДМЭ и не показанные на чертеже, подключенные к реактору холодильник для образующегося газа, сепаратор для разделения продукта на жидкость и газ и циркуляционный компрессор, смешивают 6,9 м3/ч (при нормальных условиях) потока 1 синтез-газа с 26,5 м3/ч потока 3 рециркулируемого газа.

Поток газовой смеси пропускают затем через реактор и подвергают превращению при давлении 42 бар и температуре 240 - 290oC в присутствии комбинированного катализатора, состоящего из торгового катализатора на основе окислов меди и цинка и катализатора на основе окиси алюминия. Получаемый газовый поток затем охлаждают и разделяют на жидкую фазу (2,8 кг/ч) в потоке 6 с составом, указанным в таблице 3, и газовый поток 5, который разделяют на рециркулируемый поток 3 и газовый поток 7, направляемый на очистку (0,88 м3/ч). Состав указанных потоков приведен в таблице 3.

Газовый поток 7 направляемый на очистку, рекуперируют при помывке метанольным потоком 9, отводимым из установки для перегонки метанола, путем введения потока 7 (0,88 м3/ч) при давлении 40 бар в нижнюю часть установки 8 и промывки потока метанольным потоком 9, вводимым в верхнюю часть установки 8 со скоростью 0,87 кг/ч и с температурой 14oC. Из нижней части установки 8 отводят поток 11 со скоростью 1,05 кг/ч. Составы указанных выше потоков приведены в таблице 4.

Поток 11 затем вводят при расходе 1,05 кг/ч и давлении 13 бар в не показанную на чертеже секцию предварительного нагрева, где его нагревают до 280oC.

Предварительно нагретый поток направляют в ректор 12 дегидратации метанола, в котором содержащийся в потоке метанол подвергается дегидратации при контакте с неподвижным слоем торгового катализатора на основе окиси алюминия, действующего в значительно степени в адиабатических условиях. Из реактора 12 отводят поток 13 дегидратированного продукта состава: 17,4 мол.% метанола, 46,2 мол.% ДМЭ и 36,2 мол.% воды.

Поток 13 продукта объединяют с потоком 15 легкой фракции продукта из установки 14 для дистилляции ДМЭ, в которой отгоняется ДМЭ, содержащийся в потоке 6, представляющем собой жидкую технологическую фазу.

При обычных условиях перегонки потока 6 регенерируют чистый ДМЭ, который в количестве 0,67 м3/ч отводят в качестве потока 15 из дистилляционной установки 14. Поток 15 объединяют с потоком 13 в поток 16 конечного продукта (2,43 кг/ч), состоящего из ДМЭ, применяемого в качестве топлива, содержащего ДМЭ, метанол и воду согласно представленным в таблице 5 данным.

Как явствует из таблицы 5, состав продукта потока 16 без дальнейшей очистки продукта удовлетворяет техническим условиям для ДМЭ, применяемого в качестве топлива в двигателях внутреннего сгорания с воспламенением от сжатия.

Класс C07C43/04 насыщенные

способ получения диметилового эфира методом одностадийного синтеза и его выделения -  патент 2528409 (20.09.2014)
способ получения диметилового эфира -  патент 2526622 (27.08.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2520218 (20.06.2014)
способ и установка для получения простого диметилового эфира из метанола -  патент 2505522 (27.01.2014)
интеграция способа конверсии оксигенатов в олефины с прямым синтезом диметилового эфира -  патент 2495016 (10.10.2013)
способ получения диметилового эфира -  патент 2469017 (10.12.2012)
способ производства диметилового эфира из метанола -  патент 2466980 (20.11.2012)
каталитический способ получения диметилового эфира из метанола -  патент 2459799 (27.08.2012)
способ получения алкил-трет-алкиловых эфиров -  патент 2456263 (20.07.2012)
масляная среда, используемая в реакции синтеза в реакторе, способ получения диметилового эфира, способ получения смеси диметилового эфира и метанола -  патент 2456261 (20.07.2012)

Класс C07C41/01 получение простых эфиров

способ получения диметилового эфира методом одностадийного синтеза и его выделения -  патент 2528409 (20.09.2014)
способ получения диметилового эфира -  патент 2526622 (27.08.2014)
способ и установка для получения синтетического топлива -  патент 2509070 (10.03.2014)
способ получения 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата -  патент 2483055 (27.05.2013)
способ получения терапевтически полезных производных трифенилбутена -  патент 2465261 (27.10.2012)
масляная среда, используемая в реакции синтеза в реакторе, способ получения диметилового эфира, способ получения смеси диметилового эфира и метанола -  патент 2456261 (20.07.2012)
способ получения бензилбутилового эфира -  патент 2447054 (10.04.2012)
способ получения 1-фенокси-2,2-дихлорциклопропана -  патент 2443672 (27.02.2012)
способ получения метилен-гем-диарилоксициклопропанов -  патент 2440966 (27.01.2012)
способ получения 2-(адамант-1-илокси)этанола -  патент 2420510 (10.06.2011)

Класс C07C41/09 дегидратацией соединений, содержащих окси группы

способ получения диметилового эфира методом одностадийного синтеза и его выделения -  патент 2528409 (20.09.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2520218 (20.06.2014)
способ и установка для получения простого диметилового эфира из метанола -  патент 2505522 (27.01.2014)
способ получения из глицерина первичных алкильных эфиров глицерина, пригодных в качестве присадки к биотопливу -  патент 2478091 (27.03.2013)
способ получения диметилового эфира -  патент 2469017 (10.12.2012)
способ производства диметилового эфира из метанола -  патент 2466980 (20.11.2012)
каталитический способ получения диметилового эфира из метанола -  патент 2459799 (27.08.2012)
способ получения алкенов из оксигенатов с использованием нанесенных на носитель гетерополикислотных катализаторов -  патент 2446011 (27.03.2012)
новый способ синтеза (е)-стильбеновых производных, который позволяет получить ресвератрол и писатаннол -  патент 2443671 (27.02.2012)
способ получения диоктилового эфира -  патент 2433991 (20.11.2011)

Класс C07C41/42 перегонкой

селективное извлечение и рециркуляция диметилового эфира в способе превращения метанола в олефины -  патент 2342357 (27.12.2008)
универсальная установка для очистки высококипящих растворителей вакуумной ректификацией и способы очистки вакуумной ректификацией на ней этиленгликоля, моноэтаноламина, метилцеллозольва, этилцеллозольва, бутилцеллозольва, n-метилпирролидона и бензилового спирта -  патент 2312696 (20.12.2007)
способ получения эфирного продукта (варианты) -  патент 2167848 (27.05.2001)
способ этерификации-гидрирования -  патент 2165405 (20.04.2001)
способ выделения бутиловых эфиров моно- и диэтиленгликоля из продуктов оксиэтилирования бутилового спирта -  патент 2159224 (20.11.2000)
способ получения алкильных эфиров и их смесей -  патент 2155744 (10.09.2000)
способ получения третичных алкиловых эфиров -  патент 2155182 (27.08.2000)
способ очистки фторметил-1,1,1,3,3,3- гексафторизопропилового эфира -  патент 2109726 (27.04.1998)
Наверх