способ получения гидрохлорида 5-аминолевулиновой (5-амино-4- оксопентановой) кислоты
Классы МПК: | C07C229/22 замещенного атомами кислорода C07C229/06 только одна аминогруппа и одна карбоксильная группа связаны с углеродным скелетом C07C227/12 образование амино- и карбоксильных групп A61K51/04 органические соединения |
Автор(ы): | Беляков Н.Г., Ворожцов Г.Н., Золина Н.В., Космынина Г.В., Лужков Ю.М., Лукьянец Е.А., Немцова Е.Р., Самойлова Г.Е., Соколов В.В., Ткач И.И., Чиссов В.И., Якубовская Р.И. |
Патентообладатель(и): | Государственный научный центр РФ "НИОПИК" |
Приоритеты: |
подача заявки:
1998-08-31 публикация патента:
20.03.2000 |
Изобретение касается способа получения гидрохлорида 5-аминолевулиновой кислоты (5-АЛК). 5-АЛК находит применение для фотодиагностики и фотодинамической терапии злокачественных опухолей различной локализации, а также для лечения кожных заболеваний неопухолевой природы. Кроме того, 5-АЛК может применяться в качестве стимулятора роста растений, гербицида и др. По предложенному способу гидрохлорид 5-АЛК получают из метилового эфира 5-нитролевулиновой кислоты путем его каталитического гидрирования на катализаторе 5% Pd/C при температуре 5 - 30oC и давлении водорода 10 - 20 ат в среде низших спиртов в присутствии соляной кислоты. Этот способ является технологичным, обеспечивает достаточно высокий выход целевого продукта (до 88,5%) хорошего качества (Tпл 147 - 149oC), что делает его перспективным для промышленного производства. 2 ил.,1 табл.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
Способ получения гидрохлорида 5-аминолевулиновой (5-амино-4-оксопентановой) кислоты, заключающийся в том, что производное 5-нитролевулиновой кислоты подвергают каталитическому гидрированию на катализаторе Pd/C при температуре 5 - 30oC в кислой среде, отличающийся тем, что в качестве производного 5-нитролевулиновой кислоты используют ее метиловый эфир, в качестве катализатора -5% Pd/C, процесс ведут в среде низших спиртов и давлении водорода 10 - 20 ат.Описание изобретения к патенту
Изобретение относится к способу получения синтетического гидрохлорида 5-аминолевулиновой (5-амино-4- оксопентановой) кислоты формулы HCIH2NCH2COCH2CH2COOH. Гидрохлорид 5-аминолевулиновой кислоты (5-АЛК) является эндогенным веществом - биологическим предшественником порфиринов в живых организмах и растениях. 5-АЛК способна накапливаться в клетках опухоли, превращаясь там в протопорфин IX - фотосенсибилизатор, генерирующий синглетный кислород при облучении видимым светом. Поэтому 5-АЛК предложено применять для фотодиагностики и фотодинамической терапии (ФДТ) злокачественных опухолей различной локализации, а также для лечения кожных заболеваний неопухолевой природы [Q. Peng, К.Berg, J. Moan et al. Photochem. Photobiol. 1997, 65, 235-251]. Особый интерес вызывает возможность использования 5-АЛК-индуцированной флюоресценции для интраоперационной диагностики местной распространенности злокачественного процесса и последующего контроля за эффективностью специфического лечения. Кроме того, 5-АЛК предложено применять в качестве стимулятора роста растений, гербицида и др. [Европейский патент ЕР 514776, 1992]. Такая очевидная перспективность использования 5-АЛК обусловила выраженный интерес к ее производству во многих странах мира. Известен ряд методов получения этого продукта. Так, наиболее частым синтетическим предшественником 5-АЛК являлся эфир 5-бромлевулиноной кислоты, который получали одним из следующих способов (см., например, [Н. - J. На, S. - К. Lee, Y. - J. На, J. - W. Park Synth. Commun. 1994, 24 (18), 2557 - 2562; H.E. Morton, M.R. Leanna Tetrahedron Lett. 1993, 34 (28), 4481 -4484] ):- бромированием левулиновой или 3-этоксикарбонил-4- оксопентановой кислот;
- окислительным бромированием производных эфира 4-пентеновой кислоты;
- замещением триметилсилильной группы в метиловом эфире 5-триметилсилил-4-оксопентановой кислоты бромом;
- реакцией хлорангидрида 3-карбометоксипропионовой кислоты с диазометаном и последующей кислотной обработкой образующегося диазокетона. Замену брома в эфире 5-бромлевулиновой кислоты на аминогруппу проводили либо действием фталимида калия и последующим гидролизом фталимидопроизводного, либо через стадию соответствующего азида. Недостатком этой группы методов является либо низкая селективность бромирования левулиновой кислоты и сложность выделения бромпроизводного в чистом виде, либо труднодоступность исходных реагентов. Другая группа методов получения 5-АЛК сводится к синтезу и последующему гидролизу производных азлактонов [Авторское свидетельство СССР 266773, C 07 C 227/12, 1970 г.; DE 2208800, C 07 C 101/34, 1977 г.; С.И.Завьялов, Н.И. Аронова, Н. Н. Махова, Ю.Б. Волькенштейн Изв. АН СССР, сер. хим. 1973, (3), 657- 658; G.Schulz, W.Steglich Chem. Ber. 1980, 113 (2), 787 - 790; W. Chen, L. Chen, J. Xu Youji Huaxue 1987, (4), 278 - 280]. Следует отметить также ряд методов, ключевыми стадиями которых являются (см. , например, [Evans D.A., Sidebottom PJ. J. Chem. Soc., Chem. Commun. 1978 (17), 753- 759]):
- взаимодействие хлорангидрида 3-карбометоксипропионовой кислоты с цианидом меди и последующее восстановление кетонитрила;
- ацилирование производных аминоуксусной кислоты янтарным ангидридом;
- алкилирование 4-фталимидоацетоуксусного эфира;
- нитрозирование метилового эфира -ацетоакриловой кислоты амилнитритом;
- бромирование фталимидоацетона и обработка бромпроизводного кислотой Мелдрума с последующим гидролитическим расщеплением и другие. В последние годы появилось достаточно большое число публикаций, касающихся синтеза 5-АЛК из производных пиридина, пиперидина, фурана, тетрагидрофурана [Европейский патент 718405, С 12 Р 13/00; 1996 г.], ключевыми стадиями которых являются фотохимическое или электрохимическое окисление и, зачастую, селективное восстановление одного из промежуточных продуктов. Исследуются также биохимические подходы к синтезу 5-АЛК [Патент Японии JP 95 188203, 1995]. Однако все эти методы либо нетехнологичны и трудоемки, либо требуют применения труднодоступных исходных веществ; выходы 5-АЛК при этом обычно недостаточно высоки для освоения упомянутых методов в промышленности. Известен метод, заключающийся в конденсации гиппуровой кислоты с хлорангидридом монометилового эфира янтарной кислоты в среде 4-метилпириднна при температуре -5 - 0oC с последующим гидролизом образующегося 2-фенил-4-(3-карбметоксипропионил)-1,3- оксазолинона-5 длительным кипячением в соляной [DE 2208800, С 07 С 101/34, 1977 г.]. Выход продукта составляет 48-51%. Описанный метод является сложным технологически, его использование в промышленном производстве затруднено. Наиболее близким к настоящему изобретению является способ получения 5-аминолевулиновой кислоты путем гидрирования при очень больших разбавлениях (0,18- 1,5%) 5-нитро-4- оксопентановой (5-нитролевулиновой кислоты) или ее соли (такой, как гидрохлорид) в среде 2М соляной кислоты на катализаторе 10% Pd/C при температуре (-)20 - (+)110oC и давлении водорода 1 - 3 ат [JP 09316041, C 07 C 229/22, 19.12.97]. Этот способ также сложен технологически и использование его в промышленном производстве невозможно. Задачей данного изобретения была разработка достаточно простого и технологичного способа получения 5-АЛК, который мог бы быть положен в основу его промышленного производства. Для решения этой задачи предложено получать гидрохлорид 5-АЛК гидрированием метилового эфира 5-нитролевулиновой кислоты на катализаторе 5% Pd/C в среде низшего спирта в небольших количеств соляной кислоты при температуре 5-30oC и давлении 10-20 ат. Метиловый эфир 5-нитролевулиновой кислоты является новым веществом, получаемым по разработанному нами методу ацилированием нитрометана фенилалкиловыми эфирами янтарной кислоты. Предложенный в качестве исходного продукта метиловый эфир 5- нитролевулиновой кислоты в отличие от самой кислоты и ее солей является стабильным продуктом. Используемый метиловый эфир 5- нитролевулиновой кислоты хорошо растворяется в органических растворителях, что позволяет проводить процесс гидрирования в среде низших спиртов в присутствии небольших количеств соляной кислоты. При этом достигается значительно большая (более чем в 10 раз) концентрация исходного и соответственно целевого продукта в реакционной массе. Применение более концентрированного раствора исходного соединения позволяет значительно снизить количество катализатора и использовать более дешевый катализатор (5% Pd/C). Давление водорода на выход 5-АЛК влияет незначительно, но сильно влияет на энергетические затраты и время полного превращения; соответственно повышение давления выше 20 ат приводит к неоправданным энергозатратам, а понижение ниже 10 ат замедляет процесс гидрирования. Температурный диапазон был выбран исходя из того, что понижение температуры ниже 5oC при высоком выходе продукта сильно замедляет процесс, а повышение выше 30oC значительно понижает выход целевого продукта. Количество концентрированной соляной кислоты определяется стехиометрией ее взаимодействия с образующимся амином и берется с некоторым избытком. Уменьшение ее количества меньше стехиометрического недопустимо, т.к. свободная 5-АЛК необратимо вступает в реакции самоконденсации, что приводит к резкому падению выхода продукта. Применение соляной кислоты в количествах, значительно больших стехиометрического, понижает растворимость водорода в реакционной массе, что затрудняет гидрирование. Предложенный способ иллюстрируется приведенными ниже примерами. Пример 1. В автоклав емкостью 1 л загружают 30 г метилового эфира 5- нитролевулиновой кислоты, 25 г концентрированной соляной кислоты, 378 г метанола и 12,8 г 5% Pd на угле. Автоклав продувают азотом, затем водородом, давление водорода доводят до 10 ат и включают мешалку. Температуру реакционной массы подачей рассола в рубашку поддерживают на уровне 5oC, за ходом реакции следят по скорости поглощения водорода. Поглощение водорода заканчивается через 38 часов. Автоклав разгружают, катализат профильтровывают и метанол упаривают при пониженном давлении. Полученный маслообразный продукт вносят при размешивании в ацетон, выпавший при этом осадок отфильтровывают, промывают ацетоном и сушат. Получают 25,7 г (выход 89,5%) продукта. Т.пл. 147- 149oC (разл.). При необходимости продукт может быть подвергнут дополнительной очистке. Для этого его растворяют при нагревании в соляной кислоте (1 : 1), обрабатывают углем, профильтровывают и раствор вносят в ацетон. Осадок отфильтровывают, промывают ацетоном и сушат. Получают 22,3 г (выход 77,6%) продукта с т.пл. 149-151oC (разл.). Лит. т.пл. 148-151oC (разл.) [7]. Примеры 2 - 11. Процесс проводили аналогично примеру 1, но меняли условия проведения гидрирования. Результаты приведены в таблице 1. Полученная по предложенной технологии синтетическая 5-АЛК способна вовлекаться в биосинтез, что показано по идентичности спектров флуоресценции пропорфина IX, образующегося из 5-АЛК in vitro в культуре опухолевых клеток человека, и раствора синтетического протопорфина IX фирмы "Sigma", USA, Cat. N. 8293 фиг.1 и 2). Таким образом, высокий выход на стадии гидрирования, доступность и дешевизна сырья для получения исходного метилового эфира 5-нитролевулиновой кислоты делают предлагаемый метод перспективным для промышленного производства 5-АЛК.
Класс C07C229/22 замещенного атомами кислорода
Класс C07C229/06 только одна аминогруппа и одна карбоксильная группа связаны с углеродным скелетом
Класс C07C227/12 образование амино- и карбоксильных групп
Класс A61K51/04 органические соединения