способ получения изделий из полисилоксанов

Классы МПК:B29C35/08 волновой энергией или облучением частицами
C08L83/04 полисилоксаны
C08G77/44 содержащие только полисилоксановые звенья
Автор(ы):, , , , , , ,
Патентообладатель(и):Санкт-Петербургский государственный технологический институт (Технический университет) (RU)
Приоритеты:
подача заявки:
1997-02-18
публикация патента:

Способ получения изделий из полисилоксанов включает смешение полисилоксана с добавками, изготовление изделия в форме, предварительную вулканизацию и радиационную вулканизацию. Предварительную вулканизацию проводят в диапазоне температур 125-145°С, выбираемых в зависимости от требуемой твердости одной из поверхностей изделия из соотношения Т = 1,3 H + 125, а другую поверхность изделия подвергают радиационной вулканизации в диапазоне излучений 10-60 Мрад, выбирая дозу облучения из соотношения способ получения изделий из полисилоксанов, патент № 2147517 = 0,88 HB, где H и HB - требуемые твердости рабочих поверхностей изделия при термохимической и радиационной вулканизации соответственно. Способ позволяет получать изделия из полисилоксанов с требуемым градиентом свойств на различных рабочих поверхностях при сохранении требуемых физико-механических показателей. 4 табл.
Рисунок 1

Формула изобретения

Способ получения изделий из полисилоксанов, включающий смешение полисилоксана с добавками, изготовление изделия в форме, предварительную вулканизацию и радиационную вулканизацию, отличающийся тем, что предварительную вулканизацию проводят в диапазоне температур 125 - 145oC, выбираемых в зависимости от требуемой твердости одной из поверхностей изделия из соотношения

Т = 1,3НВо + 125,

а другую поверхность изделия подвергают радиационной вулканизации в диапазоне излучений 10 - 60 Мрад, выбирая дозу облучения из соотношения

способ получения изделий из полисилоксанов, патент № 2147517 = 0,88HB,

где НВо и НВ - требуемые твердости рабочих поверхностей изделия при термохимической и радиационной вулканизации соответственно.

Описание изобретения к патенту

Изобретение относится к области переработки полимеров, в частности к способу получения изделий из полисилоксанов методом литья, прессования. Изделия из полисилоксанов широко применяются в различных областях техники, в пищевой промышленности, медицине. (Химия и практическое применение кремнийорганических соединений// Тезисы докладов 8-го совещания Российского Химического общества им. Д.И.Менделеева, С.-Петербург, 1992).

Среди подобных изделий большой интерес представляют изделия медицинского назначения (протекторы молочной железы, искусственные суставы, зубопротезные вкладыши) с так называемым градиентом свойств (Беспалов Ю.А., Коваленко Н.Г. Многокомпонентные системы на основе полимеров. Л. : Химия, 1981, с. 8 - 9). Такие изделия могут быть изготовлены из однокомпонентного материала, однако их свойства изменяются в зависимости от местоположения данной части образца. Например, поверхность изделия, контактирующая с мягкими тканями человека, имеет близкую к ним твердость, а рабочая поверхность - высокую твердость, износостойкость и прочность.

Известен способ изготовления изделий из полисилоксанов, например, мягких зубопротезных вкладышей /патент США 5268396, МКИ5 C 08 F 2/46 от 12.93/, заключающийся в смешении полисилоксана с добавками, литье материала в форму, термомеханической вулканизации изделия в форме с последующим термостатированием готового изделия. Данный способ позволяет получать изделия для контакта с мягкими тканями человека, однако эти изделия обладают низкими прочностными характеристиками и, как правило, долговечность их невысока.

Известен также способ получения изделий из полисилоксанов /Белозеров Н. В. , Технология резины. М.: Химия, 1979, с. 159/, заключающийся в смешении полисилоксана с добавками, литье материала и последующей радиационно-химической вулканизации с применением излучений высокой энергии. Данный способ позволяет получать изделия с высокими показателями твердости, однако эластичность материала низкая, и благодаря его высокой плотности он оказывается неприменимым для контакта с мягкими тканями человека.

Наиболее близким к предложенному является способ получения изделий из силоксанов, при котором смешивают его с добавками, изготавливают изделие в форме, предварительно вулканизуют его, а затем изделие подвергают радиационной вулканизации (RU 2032544 C1, кл. C 08 C 77/32, 1995).

Благодаря этому удается получать материалы с определенным сочетанием эластических и прочностных показателей. Однако, данный метод не позволяет получать изделия с градиентом свойств. Поверхности изделия, выполняющие различные функции, имеют одинаковые свойства. Кроме того, радиационная вулканизация, повышая твердость и износостойкость изделий, ухудшает органолептические свойства поверхности изделия, что ограничивает их применение в контакте с мягкими тканями человека.

Задача настоящего изобретения заключается в получении изделий из полисилоксанов с требуемым градиентом свойств на различных рабочих поверхностях при сохранении требуемых физико-механических показателей.

Получение изделий осуществляют при предварительной подвулканизации полисилоксана в диапазоне температур 125 - 145oC, выбираемых в зависимости от требуемой твердости одной из поверхностей изделий из соотношения

T=kHBo+to,

где T - температура вулканизации, oC;

k - постоянный коэффициент, oC/ед.твердости;

HBo - требуемая твердость поверхности изделия при термохимической вулканизации;

tо - температура начала термохимической вулканизации,oC (tо=125oC)

или T=1,3HBo+125.

После этого другую поверхность изделия подвергают радиационной вулканизации в диапазоне излучений 10 - 60 Мрад, выбирая дозу облучения из зависимости

способ получения изделий из полисилоксанов, патент № 2147517 = bHв,

где способ получения изделий из полисилоксанов, патент № 2147517 - доза облучения, Мрад;

b - постоянный коэффициент, Мрад/ед.твердости (b=0,88);

HB - требуемая твердость поверхности изделия при радиационной вулканизации

или способ получения изделий из полисилоксанов, патент № 2147517 = 0,88Hв.

Способ осуществляют следующим образом. Полисилоксан смешивают с добавками, проводят литье или прессование изделия в форме с его одновременной подвулканизацией. Выбор диапазона температур подвулканизации объясняется следующим: ниже температуры 125oC процесс сшивания не реализуется, выше температуры 145oС степень сшивания существенно зависит от времени ведения процесса и получить материал с регулируемыми свойствами технически сложно. Кроме того, выше температуры 145oC степень сшивания превышает 50% и получаются изделия с твердостью, превышающей твердость тканей человеческого тела. В диапазоне 125 - 145oC может быть получен материал с регулируемой твердостью. Кроме того, в данном диапазоне температур процесс подвулканизации начинается при времени, превышающем 0,5 мин и выше этого значения, не оказывающем существенного влияния на степень сшивания. Последнее обстоятельство чрезвычайно важно для реализации предлагаемого способа в промышленных условиях. Далее подвулканизованную деталь извлекают из формы. Поверхность, которая должна обладать повышенной твердостью и износостойкостью, подвергают радиационно-химическому сшиванию с использованием способ получения изделий из полисилоксанов, патент № 2147517 или способ получения изделий из полисилоксанов, патент № 2147517-излучения. При этом дозу облучения устанавливают в зависимости от требуемой твердости поверхности, испытывающей механические воздействия, пользуясь предложенным соотношением.

При этом время облучения существенной роли на процесс сшивания не оказывает и выбирается исходя из технологических соображений (от нескольких секунд до нескольких минут).

Для стабилизации свойств полученного изделия и удаления образующихся в процессе вулканизации летучих изделие может быть термостатировано при температуре 120 - 130oС в течение 6 - 8 часов.

В результате реализации данного способа могут быть получены изделия с различной твердостью на рабочих поверхностях (см. табл. 2). Примером таких изделий являются изделия медицинского назначения - протекторы молочной железы, мягкие зубопротезные вкладыши и т.п., у которых одна из рабочих поверхностей контактирует с различными тканями человека - кожа, полость рта, а другая испытывает механические воздействия, подвергаясь деформации, истиранию.

По предлагаемому способу Государственным заводом "Электронмаш" выпущены промышленные партии протекторов молочных желез.

Пример 1

Готовили образцы из полиметилсилоксанового каучука (марка LSR 2050 фирмы "Bayer") путем прессования пластин толщиной 2 и 7 мм, шириной 50 мм и длиной 100 мм. Образцы вулканизовали различными способами и определяли их физико-механические свойства. Результаты испытаний проведены в табл.1.

Приведенные данные свидетельствуют, что предлагаемый способ позволяет получать изделия с высокими физико-механическими показателями и градиентом свойств различных поверхностей.

Пример 2

Осуществляли термохимическую вулканизацию изделия из полидиметилсилоксана - протектор молочной железы. При различных температурах и времени вулканизации 0,5 мин. Результаты испытаний приведены ниже.

Как видно из табл. 2 до температуры 125oC процесс вулканизации не реализуется. После температуры 145oC наблюдается существенный рост твердости образцов. В диапазоне 125 - 145oC выполняется предложенное соотношение между твердостью образца и температурой процесса. Таким образом могут быть получены изделия с регулируемой твердостью поверхности.

Пример 3

Осуществляли радиационно-химическую вулканизацию изделий из полиметилсилоксана, прошедших химическую подвулканизацию. Радиационно-химическую вулканизацию проводили с поверхности изделия, которая в ходе эксплуатации будет испытывать механические нагрузки. При этом было установлено, что твердость полуфабриката, полученная при термомеханической вулканизации, не оказывает влияния на твердость, реализуемую при радиационной вулканизации. Результаты испытаний для образцов с начальной твердостью HB=10 ед. и HB=15 ед. приведены ниже.

Как видно из представленных данных, предложенная зависимость сохраняется в диапазоне доз облучения от 10 до 60 Мрад. Тот факт, что твердость полуфабриката, полученная в результате термохимической вулканизации, не оказывает влияния на твердость, реализуемую при радиационной вулканизации, объясняется различным химическим механизмом этих процессов.

Пример 4

Проводили термохимическую и радиационно-химическую вулканизацию образцов, сравнивая экспериментально полученные данные по выбору режимов с расчетными. Результаты представлены в табл. 4.

Таким образом видно, что представленные зависимости удовлетворительно коррелируют с экспериментальными данными могут применяться в расчетах.

Класс B29C35/08 волновой энергией или облучением частицами

воспринимающие частицы из углеродных нитей для радиочастотного нагрева -  патент 2504574 (20.01.2014)
избирательное спекание структурно-модифицированных полимеров -  патент 2498901 (20.11.2013)
способ и устройство для изготовления композитной структуры из армированного волокном термопластичного материала -  патент 2497669 (10.11.2013)
способ послойного производства трехмерного объекта -  патент 2469851 (20.12.2012)
моновиниловые ароматические полимеры, нагреваемые микроволновым излучением -  патент 2438867 (10.01.2012)
устройство вулканизации тормозных накладок -  патент 2424114 (20.07.2011)
способ непрерывного изготовления стержня из композиционного материала -  патент 2407759 (27.12.2010)
устройство для обработки материалов с использованием индукционного нагрева -  патент 2407635 (27.12.2010)
способ отверждения эпоксидных компаундов -  патент 2325997 (10.06.2008)
способ получения армированного полимерного композиционного материала -  патент 2324709 (20.05.2008)

Класс C08L83/04 полисилоксаны

Класс C08G77/44 содержащие только полисилоксановые звенья

Наверх