способ измерения магнитных характеристик сред и физических величин плотности и давления

Классы МПК:G01N27/00 Исследование или анализ материалов с помощью электрических, электрохимических или магнитных средств
G01N9/00 Определение плотности или удельного веса материалов; анализ материалов путем определения их плотности или удельного веса
G01L9/00 Измерение постоянного или медленно меняющегося давления газообразных и жидких веществ или сыпучих материалов с помощью электрических или магнитных элементов, чувствительных к механическому давлению; передача и индикация перемещений элементов, чувствительных к механическому воздействию, используемых для измерения давления с помощью электрических или магнитных средств
G01R33/16 измерения магнитной восприимчивости 
Автор(ы):, ,
Патентообладатель(и):Рассомагин Василий Радионович,
Овчинников Иван Андреевич,
Тунев Леонид Васильевич
Приоритеты:
подача заявки:
1998-03-12
публикация патента:

Способ измерения магнитных характеристик сред и физических величин плотности и давления предназначен для использования в устройствах автоматизации измерений магнитной проницаемости и физических величин плотности и давления. Технический результат - повышение точности измерений. Сущность изобретения: образец испытуемой среды с известной температурой помещают внутри индуктивного датчика, включенного в колебательный контур, в котором возбуждают непрерывные незатухающие резонансные колебания электромагнитного поля, для чего осуществляют подкачку энергии в колебательный контур. Преобразуют колебания в цифровую форму, определяют период колебаний Т колебательного контура путем измерения интервала времени, в которое укладывается заданное число периодов колебаний колебательного контура. Используя полученное значение Т, вычисляют магнитную восприимчивость, плотность и давление. Для определения магнитных характеристик, вносимых средой, измерения проводят дважды для образцов эталонной среды с разными значениями плотности. 1 з.п.ф-лы, 1 ил.
Рисунок 1

Формула изобретения

1. Способ измерения магнитных характеристик сред и физических величин плотности и давления, заключающийся в том, что образец испытуемой среды с известной температурой помещают внутри индуктивного датчика, включенного в колебательный контур, в котором возбуждают резонансные колебания электромагнитного поля и измеряют параметры колебаний в колебательном контуре, отличающийся тем, что в колебательном контуре возбуждают непрерывные незатухающие резонансные колебания, для чего осуществляют подкачку энергии в колебательный контур, преобразуют эти колебания в цифровую форму, определяют период колебаний Т колебательного контура путем измерения интервала времени, в которое укладывается заданное число периодов колебаний колебательного контура, магнитные характеристики среды вычисляют по формуле

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - магнитная восприимчивость испытуемой среды;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - относительная магнитная проницаемость испытуемой среды;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - постоянный коэффициент, определяемый параметрами катушки индуктивного датчика;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493900 - магнитная постоянная;

N - число витков катушки;

l - длина катушки;

S - площадь поперечного сечения катушки;

С - емкость конденсатора колебательного контура,

плотность способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 испытуемой парамагнитной среды вычисляют по формуле

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 = m0способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390n,

где mo - масса атома или молекулы испытуемой среды;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - концентрация атомов или молекул испытуемой среды;

K2 - постоянный коэффициент, определяемый составом испытуемой среды с известной температурой, исходя из формулы

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Pm - магнитный момент атома или молекулы вещества испытуемой среды;

K - постоянная Больцмана;

t - абсолютная температура,

давление P испытуемой парамагнитной среды вычисляют по формуле

P = nспособ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390Kспособ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390t.

2. Способ по п.1, отличающийся тем, что для определения магнитных характеристик, вносимых средой, в которую помещают испытуемую среду, измеряют значения величин периода колебаний колебательного контура дважды для образцов эталонной среды с разными известными значениями плотности, помещаемых в ту же внешнюю среду, в результате первого измерения находят общую магнитную восприимчивость способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901 вещества эталонной среды с плотностью способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901 и внешней среды, в результате второго измерения находят общую магнитную восприимчивость способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902 вещества эталонной среды с плотностью способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902 и внешней среды и вычисляют магнитную восприимчивость способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.cp внешней среды по формуле

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Описание изобретения к патенту

Изобретение относится к автоматике и вычислительной технике, а именно к автоматизации измерений магнитных характеристик сред и физических величин, и может быть использовано для измерений магнитной проницаемости и физических величин плотности и давления.

Известен способ определения концентрации парамагнитных веществ, вытекающий из работы термомагнитного газоанализатора (см. кн. под редакцией Клюева А.С. Справочное пособие. Наладка средств измерений и систем технологического контроля. - М.: Энергоатомиздат, 1990, - с. 230, 231), заключающийся в том, что образец испытуемой среды помещают в кольцевую камеру с поперечной перемычкой из стеклянной трубки, нагревают две нагревательные обмотки, которые включены в схему моста постоянного тока и расположены на поперечной перемычке, причем одну из обмоток помещают между полюсами постоянного магнита, под действием магнитного поля которого парамагнитная смесь втягивается в поперечную перемычку, где порция смеси нагревается, частично теряет свои парамагнитные свойства и выталкивается из магнитного поля более холодной парамагнитной смесью, в результате чего в поперечной перемычке возникает непрерывный поток испытуемого вещества, который вызывает изменение температуры секций обмоток и приводит к разбалансу мостовой схемы, который измеряют измерительным прибором и который является мерой концентрации парамагнитного вещества в анализируемой смеси.

Указанный способ не позволяет выполнить измерения с высокой точностью и предполагает измерение концентрации парамагнитных веществ только с высокой магнитной восприимчивостью, что обуславливает его ограниченную область применения. При измерении требуется нагрев и контроль температуры внутреннего объема корпуса датчика. Выходной сигнал измерительной схемы с кольцевой камерой зависит от наклона поперечной трубки и атмосферного давления.

Наиболее близким к предлагаемому способу является способ измерения электрических и магнитных характеристик сред (см. описание к а.с. СССР N 1372226, кл. G 01 N 27/00. Способ измерения электрических и магнитных характеристик сред), заключающийся в том, что образец испытуемой среды помещают внутри индуктивного датчика, включенного в колебательный контур, измеряют параметры колебаний в колебательном контуре, сравнивают их с эталонными значениями для образцов сред с известными характеристиками и по результатам сравнения судят о величине магнитных характеристик испытуемой среды, причем в колебательном контуре возбуждают затухающие колебания, определяют амплитуду первого полупериода затухающих колебаний, устанавливают ее на заданном уровне путем изменения напряжения, возбуждающего колебательный контур, и измеряют амплитуды четных полупериодов затухающих колебаний или в другом случае измеряют средневыпрямленное значение либо четных, либо нечетных полупериодов затухающих колебаний, а для повышения чувствительности определяют и поддерживают на заданном уровне амплитуду второго полупериода затухающих колебаний и измеряют амплитуды нечетных полупериодов затухающих колебаний.

Этот способ позволяет измерять магнитную проницаемость сред, что расширяет возможности его применения. Однако, измерение по способу основано на определении амплитудных значений резонансных колебаний колебательного контура, что предполагает низкую точность измерения. Для измерения амплитуд обычно используют амплитудный детектор с конденсатором.

Погрешность измерения такого вольтметра с амплитудным детектированием сигнала зависит от частоты и тем больше, чем меньше частота. Верхнее значение частотного диапазона амплитудных детекторов определяют прежде всего паразитные параметры: емкость и индуктивность соединительных проводов и диода. Недостатком вольтметров с амплитудным детектированием является их относительно низкая чувствительность (см. кн. под редакцией Кузнецова В.А. Справочник. Измерения в электронике. - М.: Энергоатомиздат, 1987. - с. 91 - 94).

Кроме того, указанный способ предполагает использование ключевого каскада на транзисторе, непосредственно подключенного к колебательному контуру, и стабильного источника питания, которые также вносят дополнительные погрешности в способ измерения за счет внутреннего сопротивления источника питания, емкости переходов транзистора, зависимости его параметров от температуры.

Цель изобретения - повышение точности измерений.

Указанная цель достигается тем, что после того, как образец испытуемой среды с известной температурой помещают внутри индуктивного датчика, включенного в колебательный контур, в котором возбуждают резонансные колебания электромагнитного поля, воздействуют создаваемым электромагнитным полем индуктивного датчика на испытуемую среду, ориентируют магнитные моменты атомов, молекул среды преимущественно в одном направлении вдоль силовых линий электромагнитного поля, создаваемого индуктивным датчиком, и намагничивают среду, создают собственное электромагнитное поле среды, которое взаимодействует с электромагнитным полем индуктивного датчика, в результате чего изменяют индуктивность индуктивного датчика и измеряют параметры колебаний в колебательном контуре, в колебательном контуре возбуждают непрерывные незатухающие резонансные колебания с подкачкой энергии в определенные моменты времени, увеличивают в эти моменты амплитуду колебаний, преобразуют эти колебания в цифровую форму, определяют период колебаний колебательного контура, путем измерения интервала времени, в которое укладывается заданное число периодов колебаний колебательного контура, подставляют значение величины периода в физические формулы и вычисляют магнитные характеристики сред и физических величин плотности и давления, а для дополнительного повышения точности измерений определяют значения величин периода колебаний колебательного контура для каждой испытуемой среды дважды с разными значениями плотности среды, подставляют эти значения в физические формулы и вычисляют магнитные характеристики, вносимые средой, в которую помещают испытуемую среду.

Материальным объектом, над которым осуществляют указанные выше действия, является среда (парамагнитное или диамагнитное вещество или смесь веществ).

Конкретная последовательность действий над материальным объектом состоит в следующем:

1) в помещении среды внутри индуктивного датчика, включенного в колебательный контур;

2) в непрерывном воздействии электромагнитным полем индуктивного датчика на среду путем создания непрерывных незатухающих резонансных колебаний колебательного контура;

3) ориентации магнитных моментов атомов, молекул среды преимущественно в одном направлении;

4) намагничивании среды;

5) создании собственного электромагнитного поля среды;

6) в взаимодействии электромагнитного поля среды и электромагнитного поля индуктивного датчика;

7) изменении в процессе взаимодействия индуктивности колебательного контура при помещении среды в индуктивный датчик и измерении периода колебаний в колебательном контуре с подстановкой значений величины периода в физические формулы и вычислением магнитных характеристик сред и физических величин плотности и давления.

Отличительной особенностью является создание непрерывных незатухающих резонансных колебаний, в результате которых создают непрерывное воздействие электромагнитным полем индуктивного датчика на среду. Это необходимо для того, чтобы заданное число периодов, укладываемых в измеряемой интервал времени, было большим для достижения высокой точности измерения малых значений магнитной восприимчивости среды.

Указанные отличительные признаки в известных технических решениях не обнаружены. Это доказывает соответствие предлагаемого способа измерения магнитных характеристик сред и физических величин плотности и давления критерию "существенные отличия".

Новое свойство предложенного способа заключается в создании такой совокупности и последовательности действий над материальным объектом во времени, а также условий осуществления этих действий и режимов их выполнения, при которых обеспечивается повышение точности измерения.

Таким образом, благодаря совокупности перечисленных выше существенных признаков, отличающих заявляемый способ от известных и заключающихся в определенной совокупности и последовательности действий, совершаемых над парамагнитным или диамагнитным веществом, а также смесью веществ, достигается цель изобретения. Исключение из совокупности действий даже одного отличительного признака делает невозможным достижение поставленной цели изобретения. Так, например, предлагаемый способ предполагает измерение периода колебаний, изменяющегося в результате указанных выше действий над материальным объектом, чем увеличивает точность измерения, по сравнению с измерением амплитудных значений. Исключение подкачки энергии в колебательный контур не позволит получить непрерывные незатухающие колебания, которые необходимы для того, чтобы выбрать большой интервал времени измерения, в который будет укладываться достаточное для измерения заданное число периодов. В случае обеспечения разовой подкачки и генерации затухающих колебаний колебательного контура, даже при высокой добротности контура, число измеряемых периодов может оказаться недостаточным для получения высокой точности измерений. Использование физических формул, при выполнении указанной совокупности действий позволяет с большей степенью точности получить результат измерения по сравнению с аппроксимацией характеристик в прототипе.

На чертеже изображена структурная схема одного из возможных вариантов технической реализации предлагаемого способа.

Устройство, реализующее предлагаемый способ, содержит колебательный контур 1, в индуктивном контакте с которым помещают испытуемую среду 2, обмотку 3 подкачки энергии, обмотку 4 считывания информации, выводы которой соединены с входами измерительного усилителя 5, выход которого подключен к входу компаратора 6, выход которого соединен с синхровходом делителя частоты (на чертеже не показан) формирователя 7 временных интервалов, с первым входом элемента ИЛИ 8 и с синхровходом триггера 9, информационный вход которого подключен к выходу ждущего мультивибратора (на чертеже не показан) формирователя 7 временных интервалов, а прямой выход соединен с входом запуска измерителя 10 временных интервалов, группа информационных входов-выходов которого соединена с ЭВМ 11 через плату (на чертеже не показана) IEEE 488 CARD, устанавливаемую в ЭВМ 11, и является каналом общего пользования (КОП), формирователь 7 временных интервалов через канал последовательной передачи информации RS-232C подключен к ЭВМ 11, второй вход элемента ИЛИ 8 является входом 12 запуска непрерывных незатухающих колебаний колебательного контура 1, а открытый коллекторный выход, подтянутый к плюсовому выводу напряжения питания через резистор (на чертеже не показан), соединен с базой транзисторов 13, эмиттер которого подключен к выводу "общий" питания, а коллектор подключен к первому выводу обмотки 3 подкачки энергии, второй вывод которой подключен к плюсовому выводу 14 питания, а колебательный контур 1 содержит катушку 15 индуктивности и конденсатор 16.

Катушка 15 индуктивности (индуктивный датчик) может быть выполнена следующим образом. На каркас из трубы, сделанный из полимерного, неферромагнитного материала, наматывают виток к витку толстый эмалированный провод и получают соленоид. Витки закрепляют каким-либо способом, не влияющим в значительной степени на величину магнитной восприимчивости. Поверх катушки 15 индуктивности наматывают катушку 3 подкачки и катушку 4 считывания информации и также закрепляют на трубе.

Катушка 15 индуктивности, обмотка 3 подкачки и обмотка 4 считывания информации могут не иметь дополнительного каркаса и помещены непосредственно в испытуемую среду.

Измерительный усилитель 5 известен из кн. Кофман Р., Дрискол Ф. Операционные усилители и линейные интегральные схемы. - М.: Мир, 1979, - с. 148 и может быть выполнен на стандартных операционных усилителях типа KP544УД2. Компаратор 6 может быть выполнен на КР554СА3, а триггер 9, элемент ИЛИ 8 и транзистор 13 соответственно на К555ТМ2, К555ЛЕ1 и КТ3102.

В качестве формирователя 7 временных интервалов может быть использован многоканальный программируемый генератор импульсов (см. описание изобретения к патенту СССР N 1757085, кл. H 03 K 3/64. Многоканальный программируемый генератор импульсов). При этом все связи генератора 11 и синхровходы таймеров 14 (см. чертеж к описанию патента N 1757085) разрывают. Один из трех таймеров 14-1 включают в режим делителя частоты. Его вход синхронизации используют в устройстве, реализующем способ, в качестве синхровхода формирователя 7 временных интервалов, а выход, входящий в группу 33-1 выходов, соединяют с синхровходом одного из таймеров 14-2, включенного в режим ждущего мультивибратора, выход ждущего мультивибратора, входящего в группу выходов 33-2, используют в качестве выхода формирователя 7 временных интервалов в устройстве, реализующем способ. Подробное описание работы таймеров 14-1, 14-2, . . ., 14-N и параметры функционирования в режимах делителя частоты и ждущего мультивибратора описаны в кн. под редакцией Шахнова В.А. Справочник. Микропроцессоры и микропроцессорные комплекты интегральных микросхем. - т. 1. - М.: Радио и связь, 1988, - с. 76 - 82.

В качестве измерителя временных интервалов выбран прибор И2-24, описанный в кн. под редакцией Кузнецова В.А. Справочник. Измерения в электронике. - М.: Энергоатомиздат, 1987, с. 351.

ЭВМ 11 может быть типа IBM PC.

Работу устройства рассмотрим на примере использования индуктивного датчика.

Способ осуществляют следующим образом.

После включения питания программа ЭВМ 11 устанавливает в соответствии с описанием изобретения к патенту СССР N 1757085 режимы работы таймеров 14-1, 14-2 (на чертеже не показаны) формирователя 7 временных интервалов. Канал 0 таймера 14-1 (на чертеже не показан) устанавливают в режим 2 - делителя частоты. Канал 0 таймера 14-2 (на чертеже не показан) устанавливают в режим 1 - ждущего мультивибратора. При этом выходы этих каналов устанавливаются в единичное состояние. Таким образом, на информационном входе триггера 9 устанавливают уровень логический единицы. На входы выборки таймеров 14-1 и 14-2 (на чертеже не показаны) подают уровни логического нуля, которые запрещают работу таймеров. Измеритель 10 временных интервалов через канал общего пользования с помощью ЭВМ 11 устанавливают в режим измерения длительности импульса.

Затем на вход 12 запуска и далее на второй вход элемента ИЛИ 8 подают единичный импульс, например, с параллельного канала (на чертеже не показан) ЭВМ 11, либо с помощью кнопки и временной задержки. На базу транзистора 13 поступает положительный импульс, который открывает транзистор 13, и через обмотку 3 подкачки энергии начинает протекать ток, который наводит ЭДС - электродвижущую силу индукции в колебательном контуре 1, в котором возникают электромагнитные колебания. Так как катушку 15 колебательного контура 1 выполняют в виде соленоида, внутри которого помещают испытуемую среду 2 с известной температурой, то при многократном воздействии, создаваемом электромагнитным полем катушки 15 (индуктивного датчика) на испытуемую среду 2, ориентируют магнитные моменты атомов, молекул среды 2 преимущественно в одном направлении вдоль силовых линий электромагнитного поля, создаваемого катушкой 15, и намагничивают среду 2, создают собственное электромагнитное поле среды 2, которое взаимодействует с электромагнитным полем катушки 15, в результате чего изменяют индуктивность катушки 15. Эти изменения индуктивности изменяют период колебаний колебательного контура 1, который измеряют путем снятия информации с катушки 4 считывания информации. Выводы катушки 4 считывания подключены к прямым входам измерительного усилителя 5, который усиливает сигнал. Затем сигнал с выхода измерительного усилителя 5 поступает на прямой вход компаратора 6, на инверсный выход которого подают опорное напряжение. С выхода компаратора 6 положительные сигналы прямоугольный формы поступают на первый вход элемента ИЛИ 8 (на второй вход элемента ИЛИ 8 в это время подают уровень логического нуля), синхровход формирователя 7 временных интервалов и на синхровход триггера 9. С выхода элемента ИЛИ 8 прямоугольные импульсы поступают на базу транзистора 13, при открывании которого через катушку 3 подкачки энергии течет ток, при изменении которого в колебательном контуре 1 возникает ЭДС индукции, под действием которой в колебательном контуре 1 возникают токи, согласные с направлением тока в катушке 15 в каждый полупериод колебаний колебательного контура 1. Причем в положительный полупериод колебаний в колебательном контуре 1 происходит подкачка энергии во время увеличения тока в катушке 3 подкачки энергии, а в отрицательный полупериод колебаний подкачка энергии происходит во время уменьшения тока в катушке 3 подкачки энергии, поскольку передача энергии происходит в моменты изменения тока в катушке 3 подкачки энергии. Таким образом в колебательном контуре 1 возбуждает непрерывные незатухающие резонансные колебания с подкачкой энергии в определенные моменты времени, увеличивают в эти моменты амплитуду колебаний, преобразуют эти колебания в цифровую форму и определяют период колебаний колебательного контура.

Далее программа ЭВМ 11 подает с блока запуска (на чертеже не показан) на входы разрешения таймеров 14-1, 14-2 (на чертеже не показаны) уровни логической единицы и разрешает их работу. При этом один из таймеров группы 14-1 (на чертеже не показаны), установленный в режим делителя частоты, начинает делить входную частоту, поступающую с выхода компаратора 6 на синхровход формирователя 7 временных интервалов на число n, установленное с помощью программы ЭВМ в счетчик канала 0 таймера (на чертеже не показан). На выходе этого таймера (на чертеже не показан) по окончании счета каждый раз вырабатывается отрицательный импульс, длительность которого равна длительности периода частоты входного сигнала, поступающего с выхода компаратора 6. С выхода делителя (на чертеже не показан) частоты сигнал поступает на вход синхронизации таймера группы таймеров 14-2 (на чертеже не показаны) формирователя 7 временных интервалов, который работает в режиме ждущего мультивибратора, и по отрицательному перепаду входного импульса запускает ждущий мультивибратор (на чертеже не показан), выход которого устанавливается в уровень логического нуля. Этот логический нуль поступает на информационный вход триггера 9, который по положительному фронту импульса, поступающего с выхода компаратора 6, устанавливается в нулевое состояние и формирует начало временного интервала, который начинает измерять измеритель 10 временных интервалов. Ждущий мультивибратор (на чертеже не показан) формирователя 7 временных интервалов декрементирует записанное в его счетчик число (отсчитывает число поступающих на его синхровход отрицательных импульсов с выхода делителя (на чертеже не показан) частоты) и по поступлении заданного числа импульсов устанавливают свой выход в уровень логической единицы. При этом по первому положительному перепаду импульса, поступающего с выхода компаратора 6 на синхровход триггера 9, триггер 9 устанавливается в единичное состояние и формирует закрытие измерения временного интервала для измерителя 10 временного интервала. Триггер 9 необходим для того, чтобы устранить влияние временных задержек переключения по фронтам при срабатывании счетчиков (на чертеже не показаны) формирователя 7 временных интервалов. Сформированный триггером 9 и измеренный измерителем 10 временных интервалов временной интервал считывают через канал общего пользования с помощью программ ЭВМ 11 и определяют величину периода колебаний в колебательном контуре 1. Затем с помощью формул и программ ЭВМ 11 вычисляют параметры среды.

Таким образом, измеряют интервал времени, в который укладывается заданное число периодов колебаний колебательного контура 1, определяют значения величин периода колебательного контура 1, используя физические формулы, вычисляют магнитные характеристики сред и физических величин плотности и давления.

Для измерения плотности вещества применяют следующие формулы из кн. Савельев И.В. Курс общей физики, т. 1, т. 2. - М.: Наука, 1978 (в описании указанная книга обозначена как литература {1}) и из кн. под редакцией Куликовского А. А. Справочник по радиоэлектронике. т. 1. - М.: Энергия, 1967 (в описании указанная книга обозначена как литература {2}).

Известно, что собственную частоту колебаний колебательного контура определяют по формуле:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493900 - собственная частота колебаний колебательного контура (круговая или циклическая частота);

L - индуктивность катушки колебательного контура;

C - емкость конденсатора колебательного контура.

Период колебаний колебательного контура равен:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 = 3,14....

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где f - частота колебаний.

С учетом активного сопротивления колебательного контура частоту затухающих колебаний реального контура определяют следующим образом:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - частота колебаний реального колебательного контура,

R - активное сопротивление колебательного контура.

Формулу (4) могут применять в случае измерений характеристик веществ с относительно большой величиной магнитной восприимчивости. При этом может быть исключена непрерывная подкачка энергии в колебательный контур и применена разовая подкачка. Изменение периода колебаний в этом случае будет значительным, и для измерений может хватить меньшего числа периодов и временного интервала.

Введем обозначение b=R:2L (5), литература {1}, том 2, с. 255.

Формулу (4) можно переписать в виде:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

При b2 много меньше способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 214939020, т.е. при высокой добротности контура, можно положить

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Период колебаний колебательного контура по формуле Томсона равен:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Откуда индуктивность

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Индуктивность L соленоида (катушки индуктивности колебательного контура) определяют по выражению:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390a - абсолютная магнитная проницаемость;

N - число витков катушки;

l - длина катушки;

S - площадь поперечного сечения катушки.

Так как способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390a= способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390oспособ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 (11), литература {2}, том 1, с. 158,

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390o - магнитная проницаемость вакуума (магнитная постоянная);

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - относительная магнитная проницаемость вещества (среды), то

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

в формуле (12) обозначим

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где K1 - постоянный коэффициент, определяемый параметрами катушки индуктивного датчика.

Зная индуктивность, определяют магнитную проницаемость вещества.

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Поскольку способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 = 1+способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390, литература {1}, том 2, с. 151

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 = способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390-1 (14)

Из уравнений (13) и (14), учитывая (9), находим:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

В дальнейшем все вычисления приведены для парамагнитных веществ.

Магнитная восприимчивость парамагнитного вещества равна:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - магнитная восприимчивость парамагнитных веществ;

Pm - магнитный момент атома или молекулы вещества (табличное значение для вещества);

n - концентрация атомов или молекул вещества;

K - постоянная Больцмана;

t - абсолютная температура.

В формуле (16) обозначим

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где K2 - постоянный коэффициент, так как температура и состав вещества известны.

Тогда формулы (16) перепишем в виде:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Так как способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 m0способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390n (18),

то

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 - плотность вещества;

m0 - масса атома или молекулы вещества (табличное значение).

Формула (19) известна из кн. Мякишев Г.Я., Буховцев Б.Б. Учебник для 10 класса средней школы. Физика. - М.: Просвещение, 1990, с. 23.

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Подставим значение n из формулы (19) в формулу (17)

Тогда

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 = K3способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390 (20)

Откуда плотность среды определяют по формуле:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Аналогичную формулу применяют при рассмотрении диамагнитных веществ, исходя из сравнения формул киломолярной магнитной восприимчивости для парамагнитных и диамагнитных веществ (см. литература {1}, т. 2, с. 166-168).

В случае, когда вещество для проведения измерений (например, газ) помещают во внешнюю среду (например, трубу, выполненную из материала, имеющего свою магнитную восприимчивость), существует необходимость учесть ее величину. Для этого делают два измерения вещества с известными значениями плотности и температуры эталонной среды и температуры внешней среды. В результате первого измерения находят:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901= способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вещ.1+способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср= K3способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901+способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср (22),

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вещ.1 - магнитная восприимчивость вещества с первыми известными значениями характеристик;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср - магнитная восприимчивость внешней среды, в которую помещают испытуемую среду;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901 - общая магнитная восприимчивость вещества с первыми известными характеристиками и внешней среды, в которую помещают испытуемую среду;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901 - плотность вещества, при измерении с первыми известными характеристиками.

В результате второго измерения при другой известной плотности среды и той же температуре испытуемой и внешней среды получим:

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902= способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вещ.2+способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср= K3способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902+способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср (23),

где способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вещ.2 - магнитная восприимчивость вещества с вторыми известными значениями характеристик;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср - магнитная восприимчивость внешней среды, в которую помещают испытуемую среду;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902 - общая магнитная восприимчивость вещества с вторыми известными характеристиками и внешней среды, в которую помещают испытуемую среду;

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902 - плотность вещества, при измерении с вторыми известными характеристиками.

Решая систему уравнений с двумя неизвестными, находим в следующем порядке:

Из первого уравнения находим

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Подставим значение K3 во второе уравнение и находим способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901= способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902-способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.срспособ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902+способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.срспособ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901 (26)

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390вн.ср(способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901-способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902) = способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901-способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493901способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 21493902 (27)

способ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390

Давление находят по формуле: p=nспособ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390Kспособ измерения магнитных характеристик сред и физических   величин плотности и давления, патент № 2149390t (29) литература {1}, т.1. с. 277.

Так как постоянная Больцмана K и температура t для данной испытуемой среды известны, вычисляя значение магнитной восприимчивости среды при измерении периода, находят плотность среды по формуле (21), концентрацию по формуле (19) и давление по формуле (29).

Магнитную восприимчивость смеси сред определяют как сумму произведений отдельных компонентов на их относительную объемную концентрацию (см. кн. под редакцией Клюева А. С. , Справочное пособие. Наладка средств измерений и систем технологического контроля. - М.: Энергоатомиздат, 1990, с. 230).

Для измерения характеристик ферромагнитных сред выполняют необходимое число измерений эталонных сред с заданными известными характеристиками (например, плотности и температуры), запоминают магнитную восприимчивость для этих сред и результаты измерений используют для определения плотности испытуемой среды. Таким образом, для ферромагнитных сред запоминают характеристику эталонной среды в виде табличных значений, которые хранят в памяти ЭВМ 11, и поступают как в способе-прототипе, т.е. сравнивают результаты измерений с этими табличными значениями.

В общем случае для определения всех рассматриваемых в этом описании характеристик сред возможно определять последние путем получения табличных значений известных характеристик и дальнейшей аппроксимации участков между известными значениями для определения параметров испытуемых сред, как сделано в прототипе.

Таким образом, предлагаемый способ повышает точность измерений характеристик испытуемых сред за счет определения изменения периода колебаний при помещении в индуктивный датчик испытуемой среды путем измерения интервала времени, в которое укладывается заданное число периодов колебаний колебательного контура, для чего обеспечивают непрерывные незатухающие колебания в колебательном контуре.

Класс G01N27/00 Исследование или анализ материалов с помощью электрических, электрохимических или магнитных средств

устройство контроля материалов и веществ -  патент 2529670 (27.09.2014)
прибор контроля трубопровода с двойной спиральной матрицей электромагнитоакустических датчиков -  патент 2529655 (27.09.2014)
способ и устройство для контроля над процессом лечения повреждения -  патент 2529395 (27.09.2014)
способ и устройство для определения доли адсорбированного вещества в адсорбирующем материале, применение устройства для определения или мониторинга степени насыщения адсорбирующего материала, а также применение устройства в качестве заменяемой вставки для поглощения влаги в технологическом приборе -  патент 2529237 (27.09.2014)
способ детекции аналита из раствора на частицах и устройство для его реализации -  патент 2528885 (20.09.2014)
стенд и способ контроля посредством магнитной дефектоскопии вала газотурбинного двигателя -  патент 2528856 (20.09.2014)
способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота -  патент 2528584 (20.09.2014)
способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации -  патент 2528273 (10.09.2014)
полупроводниковый газовый датчик -  патент 2528118 (10.09.2014)
способ изготовления чувствительного элемента датчиков газов с углеродными нанотрубками -  патент 2528032 (10.09.2014)

Класс G01N9/00 Определение плотности или удельного веса материалов; анализ материалов путем определения их плотности или удельного веса

способ и устройство для радиационного измерения плотности твердых тел -  патент 2529648 (27.09.2014)
способ непрерывного контроля средней влажности волокон в волоконной массе -  патент 2528043 (10.09.2014)
способ центробежной порометрии -  патент 2526301 (20.08.2014)
вибрационный денситометр с улучшенным вибрирующим элементом -  патент 2526297 (20.08.2014)
способ измерения объемов пористых тел -  патент 2525931 (20.08.2014)
способ определения средней плотности гранул полистирольного заполнителя для полистиролбетона -  патент 2525150 (10.08.2014)
способ определения распределения плотности проволочного материала по объему изделия и установка для определения плотности проволочного материала в объеме изделия -  патент 2523054 (20.07.2014)
устройство для измерения плотности, степени аэрированности пульпы и массовой концентрации твердого в пульпе (измеритель пат) -  патент 2518153 (10.06.2014)
способ определения плотности металлических расплавов -  патент 2517770 (27.05.2014)
устройство для определения длины работающего слоя углеродного микропористого сорбента при поглощении паров органических веществ -  патент 2516642 (20.05.2014)

Класс G01L9/00 Измерение постоянного или медленно меняющегося давления газообразных и жидких веществ или сыпучих материалов с помощью электрических или магнитных элементов, чувствительных к механическому давлению; передача и индикация перемещений элементов, чувствительных к механическому воздействию, используемых для измерения давления с помощью электрических или магнитных средств

устройство для дистанционного измерения давления -  патент 2528555 (20.09.2014)
способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы -  патент 2528541 (20.09.2014)
высокотемпературный полупроводниковый преобразователь давления -  патент 2526788 (27.08.2014)
способ измерения давления контролируемой среды -  патент 2526586 (27.08.2014)
датчик давления -  патент 2523754 (20.07.2014)
пьезоэлектрический датчик давления -  патент 2523091 (20.07.2014)
способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы -  патент 2522770 (20.07.2014)
датчик давления -  патент 2521869 (10.07.2014)
способ определения давления насыщения нефти газом -  патент 2521091 (27.06.2014)
датчик давления на основе нано- и микроэлектромеханической системы балочного типа -  патент 2520943 (27.06.2014)

Класс G01R33/16 измерения магнитной восприимчивости 

способ оперативного контроля подлинности изделий из золота от подделок -  патент 2516604 (20.05.2014)
устройство для измерения магнитной вязкости ферромагнетиков -  патент 2488841 (27.07.2013)
устройство для проверки магнитной вязкости ферромагнетиков -  патент 2488840 (27.07.2013)
устройство для измерения динамического распределения магнитной восприимчивости ферромагнетика -  патент 2467342 (20.11.2012)
прибор для измерения кривой намагничивания ферромагнетика -  патент 2462729 (27.09.2012)
способ определения магнитной проницаемости цилиндрических ферромагнитных проводников -  патент 2423717 (10.07.2011)
способ определения намагниченности насыщения феррита -  патент 2410706 (27.01.2011)
измеритель магнитной вязкости ферромагнетиков -  патент 2357241 (27.05.2009)
способ измерения магнитной вязкости ферроматериалов -  патент 2357240 (27.05.2009)
способ определения магнитного момента квадратной катушки с током -  патент 2307370 (27.09.2007)
Наверх