способ получения моноалкиловых эфиров алкиленгликолей

Классы МПК:C07C41/03 реакцией оксиранового кольца с оксигруппой
C07C43/13 содержащими оксигруппы или металл-кислородные группы
Автор(ы):, ,
Патентообладатель(и):Индивидуальное Частное Предприятие "Вега-Хим"
Приоритеты:
подача заявки:
1999-01-12
публикация патента:

Изобретение относится к способу получения моноалкиловых эфиров моно- и диэтиленгликолей (этил-, бутил-целлозольвов и карбитолов), а также монометилового эфира пропиленгликоля, которые находят применение в производстве растворителей, пластификаторов, компонентов для низкозамерзающих, антиобледенительных, гидравлических и гидротормозных жидкостей, а также для получения материалов, применяемых в промышленности пластических масс, пестицидов, лаков и красок. Способ получения моноалкиловых эфиров алкиленгликолей путем взаимодействия оксидов этилена и пропилена со спиртами при повышенных температуре и давлении заключается в использовании в качестве катализатора органических соединений металлов пятой и/или шестой группы Периодической системы элементов, предпочтительно органических соединений ванадия, молибдена и вольфрама, а точнее алкиловых эфиров соответствующих неорганических кислот. В результате предложенного способа достигается высокая селективность при использовании меньшего избытка спирта (4-8-кратном) по отношению к оксиду алкилена, получаются концентрированные растворы целевых продуктов (более 20 мас.%) и, как следствие, снижаются энергозатраты на стадии выделения. 2 з.п. ф-лы, 2 табл.
Рисунок 1

Формула изобретения

1. Способ получения моноалкиловых эфиров алкиленгликолей взаимодействием оксидов алкилена со спиртами в присутствии металлсодержащих катализаторов при повышенных температуре и давлении, отличающийся тем, что процесс осуществляют в присутствии органических соединений металлов пятой и/или шестой группы Периодической системы элементов.

2. Способ по п.1, отличающийся тем, что в качестве органических соединений металлов пятой и/или шестой группы Периодической системы элементов используют органические соединения ванадия, молибдена и вольфрама.

3. Способ по п.2, отличающийся тем, что в качестве органических соединений ванадия, молибдена и/или вольфрама используют алкиловые эфиры соответствующих неорганических кислот.

Описание изобретения к патенту

Изобретение относится к способу получения моноалкиловых эфиров моно- и диалкиленгликолей, в частности к способу получения метил-, этил-, бутил- целлозольвов и карбитолов, а также моноалкиловых эфиров пропиленгликоля.

Моноалкиловые эфиры алкиленгликолей используются в производстве растворителей, пластификаторов, компонентов для низкозамерзающих, антиобледенительных, гидравлических и гидротормозных жидкостей, а также для получения материалов, применяемых в промышленности пластических масс, пестицидов, лаков и красок.

Известен способ получения моноэтилового эфира этиленгликоля (этилцеллозольва) и моноэтилового эфира диэтиленгликоля (этилкарбитола) взаимодействием этанола и оксида этилена при повышенных температуре и давлении в присутствии катализатора - гидроксида натрия (Дымент О.И. и др. Гликоли и другие производные окисей этилена и пропилена. - М.: Химия, 1976; Малиновский М.С. Окиси олефинов и их производные. - М.: Госхимиздат, 1961).

Недостатком данного способа является низкая селективность образования целевых продуктов. При мольном соотношении оксид : спирт = 1 : 5 селективность образования этилцеллозольва не превышает 51,3% мол., этилкарбитола - 13,9% мол.

Наиболее близким аналогом данного способа является способ получения моноалкиловых эфиров алкиленгликолей взаимодействием этанола и оксида этилена и монометилового эфира пропиленгликоля при повышенных температуре и давлении в присутствии металлсодержащего катализатора - молибденсодержащий кубовый остаток после отгонки продуктов эпоксидирования олефинов C3-C5 органической гидроперекисью или водный экстракт указанного кубового остатка (Патент России N 1203846, приоритет 28.10.81).

Недостатком данного способа является то, что высокая селективность (для этилцеллозольва 63,7-83,4% мол., этилкарбитола 3,24-16,6% мол., монометилового эфира пропиленгликоля 95,1% мол.) достигается путем проведения процесса при большом 8-10-кратном мольном избытке спирта по отношению к оксиду. Это приводит к получению разбавленных растворов целевых продуктов (менее 20% мас.) и в свою очередь требует повышенных энергозатрат при их выделении.

Предлагаемый способ позволяет достигнуть высокой селективности при использовании меньшего избытка спирта (4-8-кратном) по отношению к оксиду алкилена, получать концентрированные растворы целевых продуктов (более 20% мас.) и, как следствие, снизить энергозатраты на стадии выделения.

Указанный результат достигается взаимодействием оксида этилена и пропилена со спиртами при повышенных температуре и давлении и использовании в качестве катализаторов органических соединений металлов пятой и/или шестой группы Периодической системы элементов. Предпочтительно в качестве органических соединений металлов пятой и/или шестой группы Периодической системы элементов используют органические соединения ванадия, молибдена и вольфрама. Предпочтительно в качестве органических соединений ванадия, молибдена и/или вольфрама используют алкиловые эфиры соответствующих неорганических кислот.

Следующие примеры иллюстрируют способ.

Пример 1

В металлическую ампулу объемом 200 мл, оборудованную рубашкой для обогрева теплоносителем, вентилем для загрузки реагентов и выгрузки продуктов реакции, последовательно загружают 92 г (2 моля) этанола, 22 г (0,5 моля) оксида этилена и в качестве катализатора 0,1 г бис-(этандиол-1,2)-молибдата. Мольное соотношение оксид : спирт = 1 : 4. Содержание молибдена в исходной реакционной смеси составляет - 0,005% мас.

Ампулу помещают на лабораторную качалку и присоединяют к термостату с температурой 120oC, создают давление 20 ати. Через 2 часа конверсия оксида составляет 100%.

Суммарная концентрация целевых продуктов (целлозольва и карбитола) в продуктах реакции (Сцп) составила 36,7% мас. Селективность образования этилцеллозольва (на превращенный оксид) Ф1 составляет 77,0% мол., этилкарбитола Ф2 - 21,4% мол., других гликолей (этиленгликоль, диэтиленгликоль, моноэтиловый эфир триэтиленгликоля) Ф3 - 1,6%.

Примеры 2-5

Процесс осуществляют аналогично примеру 1 при других мольных отношениях оксид : спирт, при различном содержании молибдена в исходной реакционной смеси, а также при различных условиях проведения процесса оксиэтилирования. Условия проведения процесса и результаты приведены в таблице 1. В таблице 1 также приведены результаты испытания катализаторов при синтезе монобутилового эфира этиленгликоля (бутилцеллозольва) и монобутилового эфира диэтиленгликоля (бутилкарбитола) - примеры 4-5.

Примеры 6-10

Процесс осуществляют аналогично примеру 1 при использовании других катализаторов, температуре 110oC, давлении 20 ати, содержании металлов в исходной реакционной смеси 0,01% мас. и мольном соотношении этанол : оксид этилена = 6 : 1. Процесс осуществляют до полной конверсии оксида в течение 2-3 час. Условия проведения процесса и результаты приведены в таблице 2.

Пример 11

Процесс осуществляют по методике, описанной в примере 1. В металлическую ампулу последовательно загружают 96 г (3 моля) метанола, 29 г (0,5 моля) оксида пропилена и в качестве катализатора 0,15 г бис-(пропандиол-1,2)-молибдата. Мольное соотношение оксид : спирт = 1 : 6. Содержание молибдена в исходной реакционной смеси составляет - 0,007% мас.

Ампулу помещают на лабораторную качалку и присоединяют к термостату с температурой 95oC, создают давление 15 ати. Через 1 час конверсия оксида составляет 100%.

Концентрация целевого продукта (монометилового эфира пропиленгликоля) в продуктах реакции составила 35,8% мас. Селективность образования целевого продукта (на превращенный оксид) Ф1 составляет 96,9% мол., монометилового эфира дипропиленгликоля Ф2 - 3,2% мол. Другие гликоли (пропиленгликоль, дипропиленгликоль, моноэтиловый эфир триприпиленгликоля) обнаружены в следовых количествах. Монометиловый эфир пропиленгликоля состоит на 64,5% из соединения с вторичной OH-группой.

Таким образом, предложенный способ при сохранении высокой селективности позволяет увеличить концентрацию целевых продуктов в реакционной массе с 20% мас. до 21-36,7% мас. и, как следствие, снизить энергетические затраты на стадии выделения.

Класс C07C41/03 реакцией оксиранового кольца с оксигруппой

способ получения алкандиола и диалкилкарбоната -  патент 2461541 (20.09.2012)
способ получения алкандиола и диалкилкарбоната -  патент 2460719 (10.09.2012)
способ получения алкоксилированного спирта -  патент 2380348 (27.01.2010)
способ производства этиленоксида -  патент 2378264 (10.01.2010)
процесс получения смеси алкоксилированных спиртов -  патент 2358965 (20.06.2009)
способ производства этиленоксида -  патент 2348624 (10.03.2009)
способ алкоксилирования моноспиртов в присутствии металлоорганических каркасных материалов -  патент 2346925 (20.02.2009)
способ получения оксида олефина -  патент 2345073 (27.01.2009)
способ получения простых ариловых эфиров -  патент 2330012 (27.07.2008)
способ эпоксидирования олефинов и катализатор для применения в способе -  патент 2328491 (10.07.2008)

Класс C07C43/13 содержащими оксигруппы или металл-кислородные группы

Наверх