масса для изготовления керамического фильтра-мембраны

Классы МПК:C04B38/00 Пористые строительные растворы, бетон, искусственные камни или керамические изделия; получение их
C04B28/34 содержащие низкотемпературные фосфатные связующие
Автор(ы):, , ,
Патентообладатель(и):Технологический институт Саратовского государственного технического университета
Приоритеты:
подача заявки:
1998-07-14
публикация патента:

Изобретение относится к производству керамических изделий, предназначенных для фильтрации и очистки сточных вод гальванических производств от ионов тяжелых металлов. Изобретение позволяет повысить специфическую селективность керамических фильтров за счет того, что масса для изготовления фильтров содержит, мас.%: фосфатное связующее 50 - 60, порообразователь аммоний хлористый NH4Cl 20 - 25, хромосодержащий гальваношлам 10 - 12, вода - остальное. 5 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

Формула изобретения

Масса для изготовления керамического фильтра, содержащая фосфатное связующее и огнеупорный наполнитель, отличающаяся тем, что в качестве огнеупорного наполнителя масса содержит хромсодержащий гальваношлам и дополнительно порообразователь - аммоний хлористый NH4Cl при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 50 - 60

Порообразователь - 20 - 25

Хромсодержащий гальваношлам - 10 - 12

Вода - Остальное

Описание изобретения к патенту

Изобретение относится к производству керамических изделий, а именно к производству керамических фильтров-мембран, обладающих свойствами специфической селективности при улавливании ионов тяжелых металлов в процессе очистки сточных вод (СВ) гальванических производств.

Известен состав массы для изготовления пористых керамических изделий [1] , достоинством которых является высокая однородность изделия, малый цикл термообработки, а недостатком - необходимость обработки формуемого материала при высоких давлениях (до 20 МПа), низкое водопоглощение, а также использование в качестве компонентов сырьевой смеси трепела и фрезота в силу их малой доступности.

В качестве прототипа предлагаемого изобретения выбрана масса, включающая алюмофосфатное или фосфатное связующее, огнеупорный наполнитель, оксид хрома, легкоплавкую глину и полевой шпат для изготовления керамического фильтра [2] , используемого для фильтрации расплавленных металлов. Такие фильтры обладают высокой прочностью, пористостью, воздухопроницаемостью, но имеют большой диаметр пор (0,7 - 1,5 мм), что не позволяет использовать их для очистки сточных вод. Кроме того, недостатком прототипа является сложная технология пропитки матрицы из пенополиуретана керамическим шликером с последующей двухстадийной сушкой при 150oC в течение 2-х часов и высокотемпературным обжигом при 1050 - 1250oC.

Изобретением решается задача очистки сточных и промывных вод гальванических производств от ионов тяжелых металлов.

Для достижения названного технического результата в состав массы для изготовления керамических фильтров, содержащей фосфатное связующее и огнеупорный наполнитель, в качестве огнеупорного наполнителя вводят хромсодержащий гальваношлам и порообразователь хлористый аммоний NH4Cl при следующем соотношении компонентов, мас. %: фосфатное связующее 50 - 60, хромсодержащий гальваношлам 10 - 12, порообразователь NH4Cl 20 - 25, вода - остальное. Состав компонентов позволяет значительно упростить технологию изготовления фильтров-мембран.

Отходы гальванического производства в виде твердого осадка, получаемого в результате реагентной очистки сточных вод гальванических цехов машиностроительных заводов Саратовской области ("Радон" (г. Маркс), "ЭЗЗС" - запальных свечей, ЭЗТФ - топливных фильтров (г. Энгельс) и др.), в настоящее время нигде не используются и скапливаются на очистных сооружениях и в шламонакопителях. По внешнему виду представляют собой твердое вещество буро-зеленого цвета. Массовая доля влаги в осадке 50 - 55%. По гранулометрическому составу - это фракции до 30 - 50 мм. По химическому составу они содержат до 35 - 45 мас. % оксидов или гидроксидов хрома с добавками ионов никеля, железа, меди, хрома (III). Кроме того, в составе гальваношлама присутствуют нерастворимые осадки: глина, песок, опилки, ил. Перед использованием гальваношлам сушат до остаточного содержания воды не более 5 - 10 мас.%.

Керамические фильтры-мембраны изготавливают следующим способом. В фосфатное связующее (50 - 60 мас.%) добавляют хромсодержащий гальваношлам (10 - 12 мас.%). Смесь тщательно перетирают. В полученное хромфосфатное связующее вводят порообразователь хлористый аммоний соответственно 20-25 мас.% и перемешивают до полного растворения соли. При добавлении NH4Cl происходит размягчение массы до консистенции сметаны, сопровождающееся охлаждением смеси. Через ~ 15 мин масса затвердевает до вязкости пластилина и готова к употреблению. Фильтры-мембраны изготавливают в виде таблеток толщиной 0,5 см.

Изобретение поясняется следующими примерами конкретного выполнения.

Пример 1. Готовили массу для керамических фильтров-мембран путем смешения фосфатного связующего, порообразователя NH4Cl и хромсодержащего гальваношлама при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 60

Порообразователь NH4Cl - 15

Хромсодержащий гальваношлам - 8

Вода - Остальное

Смесь тщательно перетирали до гомогенного состояния. Из полученной пластилинообразной массы изготавливали фильтры-мембраны в виде таблеток толщиной 0,5 см и диаметром 1 см. Таблетки прокаливали в печи при температуре 350масса для изготовления керамического фильтра-мембраны, патент № 215113020oC в течение 30 мин. После охлаждения при комнатной температуре их исследовали на скорость пропускания сточной воды (в нормальных условиях) и на степень ее очистки от ионов тяжелых металлов (никеля (II), железа (III) и хрома (VI)) по стандартным методикам [3]. Полученные данные представлены в таблицах 1, 2, 3.

Пример 2. В условиях примера 1 готовили массу при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 60

Порообразователь NH4Cl - 20

Хромсодержащий гальваношлам - 12

Вода - Остальное

По аналогии с примером 1 готовили керамические фильтры-мембраны и исследовали их на скорость пропускания СВ и на степень ее очистки. Полученные данные представлены в таблицах 1, 2, 3.

Пример 3. В условиях примера 1 готовили массу при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 55

Порообразователь NH4Cl - 23

Хромсодержащий гальваношлам - 11

Вода - Остальное

По аналогии с примером 1 готовили керамические фильтры-мембраны и исследовали их на скорость пропускания СВ и на степень ее очистки. Полученные данные представлены в таблицах 1, 2, 3.

Пример 4. В условиях примера 1 готовили массу при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 55

Порообразователь NH4Cl - 25

Хромсодержащий гальваношлам - 12

Вода - Остальное

По аналогии с примером 1 готовили керамические фильтры-мембраны и исследовали их на скорость пропускания СВ и на степень ее очистки. Полученные данные представлены в таблицах 1, 2, 3.

Пример 5. В условиях примера 1 готовили массу при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 60

Порообразователь NH4Cl - 25

Хромсодержащий гальваношлам - 12

Вода - Остальное

По аналогии с примером 1 готовили керамические фильтры-мембраны и исследовали их на скорость пропускания СВ и на степень ее очистки. Полученные данные представлены в таблицах 1, 2, 3.

Пример 6. В условиях примера 1 готовили массу при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 60

Порообразователь NH4Cl - 30

Хромсодержащий гальваношлам - 10

Вода - Остальное

По аналогии с примером 1 готовили керамические фильтры-мембраны и исследовали их на скорость пропускания СВ и на степень ее очистки. Полученные данные представлены в таблицах 1, 2, 3.

Пример 7. В условиях примера 1 готовили массу при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 50

Порообразователь NH4Cl - 25

Хромсодержащий гальваношлам - 15

Вода - Остальное

По аналогии с примером 1 готовили керамические фильтры-мембраны и изучали их характеристики. Данные представлены в таблицах 1, 2, 3.

Пример 8. По аналогии с примером 1 готовили керамические фильтры-мембраны из массы при следующем соотношении компонентов, мас.%:

Фосфатное связующее - 50

Порообразователь NH4Cl - 20

Хромсодержащий гальваношлам - 10

Вода - Остальное

Характеристики изготовленных керамических фильтров-мембран представлены в таблицах 1, 2, 3.

Анализ табличных данных показывает, что керамические фильтры-мембраны с содержанием NH4Cl более 25 мас. % оказались очень пористыми и хрупкими. Скорость пропускания сточной воды при этом составляла более 100 мл/ч и степень извлечения из нее ионов тяжелых металлов, как следствие, снижалась на ~ 3 - 10% по сравнению с керамическими мембранами, в которых содержание порообразователя NH4Cl составляло 20 - 25%. Поэтому количество порообразователя более 25% не использовали. При содержании NH4Cl менее 20 мас.% мембраны практически не пропускали СВ (таблица 4) и имели низкую степень очистки по ионам тяжелых металлов (таблица 5). При введении порообразователя в исходную массу в количестве 20 - 25% тяжелые металлы образуют в поверхностном слое мембраны гидроксокомплексные формы, изменяющие ее поверхностный заряд. При пропускании СВ содержащиеся в ней ионы тяжелых металлов удерживаются в принимающем заряженном слое мембраны очень прочно. Сточная вода на выходе имеет намного меньшую концентрацию ионов тяжелых металлов. Полученные данные позволяют говорить о возможности достижения значительной степени очистки (на 50 - 90%) СВ от ионов тяжелых металлов с помощью изготовленных фильтров-мембран. В процессе очистки растет сопротивление поверхностного слоя мембран, но после проработки свойства мембран восстанавливаются [4].

Таким образом, предлагаемое изобретение - масса для изготовления керамического фильтра-мембраны достаточно проста по составу и позволяет при ее изготовлении утилизировать накопленные гальваношламы. Изготовленные на ее основе керамические фильтры-мембраны обладают свойством специфической селективности и позволяют очищать сточные и промывные воды гальванических цехов от ионов Ni(II), Fe (III), Cr (VI). Степень очистки достигает 50 - 90%. Технология изготовления фильтров-мембран не требует сложного оборудования и значительных энергозатрат.

Источники информации

1. Авт. св. 1787983 СССР, МКИ5 C 04 B 38/00, 35/14. Способ изготовления пористых керамических изделий /М.Г. Габидуллин, Р.З. Рахимов, М.С. Низамов, А. И. Батанов, Р.М. Газизов (СССР). - N 4825962/33; заявл. 22.05.90, опубл. 15.01.93 // Изобретения. - 1993. - N 2.

2. Авт.св. 1313836 СССР, МКИ4 C 04 B 38/00, 28/34. Масса для изготовления керамического фильтра /Е.Н. Веричев, Л.С. Опалитчук, В.С. Черепанов, М. Д. Краснопольская, И. В. Жвецов, Л.Г. Березин, И.П. Теплухин, И.Т. Романов (СССР). - N 3910417/29-33; заявл. 12.06.85; опубл. 30.05.87 // Изобретения. - 1987. - N 20.

3. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. - М.: Химия, 1984. - 448 с.

4. Влияние тяжелых металлов на специфическую селективность / В.Д. Гребенко, Р.Д. Чеботарева, Р.И. Какабаев, М.А. Кеймиров // Электрохимия. - 1996. - Т. 32. N 2. - С. 186-188.

Класс C04B38/00 Пористые строительные растворы, бетон, искусственные камни или керамические изделия; получение их

способ получения стеклокерамзита и порокерамики из трепелов и опок -  патент 2528814 (20.09.2014)
заполнитель для бетона -  патент 2528809 (20.09.2014)
способ приготовления керамзитобетона -  патент 2528794 (20.09.2014)
шихта для производства пористого заполнителя -  патент 2528312 (10.09.2014)
состав керамзитобетонной смеси -  патент 2527974 (10.09.2014)
комплексная добавка к строительным растворам -  патент 2527438 (27.08.2014)
способ получения пористого теплоизоляционного материала -  патент 2527417 (27.08.2014)
сырьевая смесь для изготовления пенобетона -  патент 2526065 (20.08.2014)
шихта для производства пористого заполнителя -  патент 2526064 (20.08.2014)
способ полусухого прессования гипса -  патент 2525412 (10.08.2014)

Класс C04B28/34 содержащие низкотемпературные фосфатные связующие

Наверх