перистальтический насос

Классы МПК:F04B43/12 перистальтического действия 
Автор(ы):,
Патентообладатель(и):Кубанский государственный аграрный университет
Приоритеты:
подача заявки:
1998-06-26
публикация патента:

Изобретение относится к насосостроению. Для обеспечения автоматической промывки в корпусной детали 1 в плоскости вращения ротора 6 выполнены каналы 8, которые герметично соединены на выходе с полостью эластичного распределительного элемента 2, а на входе - с внешним пневмоисточником через запорные элементы 9, каждый из которых кинематически связан с соответствующей подпружиненной кареткой 5 через исполнительный механизм 10, причем эластичный распределительный элемент 2 снабжен на входе обратным клапаном 3. Обеспечивает автоматическую промывку эластичного распределительного элемента в процессе работы насоса. 1 з.п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Перистальтический насос, содержащий эластичный распределительный элемент, расположенный на опорной поверхности корпусной детали и взаимодействующий с роликами, которые установлены на подпружиненных каретках, вставленных в пазы ротора, отличающийся тем, что в корпусной детали в плоскости вращения ротора выполнены каналы, которые герметично соединены на выходе с полостью эластичного распределительного элемента, а на входе - с внешним пневмоисточником через запорные элементы, каждый из которых кинематически связан с соответствующей подпружиненной кареткой через исполнительный механизм, причем эластичный распределительный элемент снабжен на входе обратным клапаном.

2. Перистальтический насос по п.1, отличающийся тем, что исполнительный механизм выполнен в виде электромагнита, сердечник которого соединен с запорным элементом.

Описание изобретения к патенту

Изобретение относится к насосостроению, касается перистальтических насосов и может найти применение в различных отраслях народного хозяйства для перекачки текучих сред.

Известны перистальтические насосы, содержащие эластичный распределительный элемент, расположенный на опорной поверхности корпусной детали и взаимодействующий с роликами ротора (см. авт. свид. СССР N 731047, F 04 B 43/12, 1978). Конструкция насоса позволяет выполнять промывку эластичного распределительного элемента, так как расположенная под ним опорная поверхность корпусной детали выполнена в виде перекрывающей щель ленточной заслонки, подвижно закрепленной с внешней стороны корпусной детали. При полном выдвижении заслонки ролики вытесняют эластичный распределительный элемент в образовавшуюся щель и не пережимают его.

Недостатком данного устройства является то, что для промывки эластичного распределительного элемента необходимо останавливать работу перистальтического насоса. Другой недостаток устройства - быстрая изнашиваемость эластичного распределительного элемента из-за непосредственного механического воздействия на его заслонки при ее выдвижении и вдвижении.

Наиболее близким по технической сущности к изобретению является перистальтический насос, содержащий эластичный распределительный элемент, расположенный на опорной поверхности корпусной детали и взаимодействующий с роликами, которые установлены на подпружиненных каретках, вставленных в пазы ротора (см. авт. свид. СССР N 735824, F 04 B 43/12, 1977 - прототип). Наличие роликов, установленных на подпружиненных каретках, которые вставлены в пазы ротора, позволяет выполнять копирование роликами неровностей внешней поверхности эластичного распределительного элемента при задержке внутри его посторонних включений. Это смягчает механическое воздействие роликов на эластичный распределительный элемент и тем самым увеличивает срок службы насоса.

Однако данный насос имеет недостатки, так как в его конструкции не предусмотрена возможность промывки эластичного распределительного элемента без разборки насоса.

Технической задачей решения является обеспечение автоматической промывки эластичного распределительного элемента в процессе работы насоса.

Задача достигается тем, что перистальтический насос содержит эластичный распределительный элемент, снабженный на входе обратным клапаном и расположенный на опорной поверхности корпусной детали и взаимодействующий с роликами, которые установлены на подпружиненных каретках, вставленных в пазы ротора. Кроме того, в корпусной детали в плоскости вращения ротора выполнены каналы, которые герметично соединены на выходе с полостью эластичного распределительного элемента, а на входе - с внешним пневмоисточником через запорные элементы, каждый из которых кинематически связан с соответствующей подпружиненной кареткой через исполнительный механизм. При этом исполнительный механизм выполнен в виде электромагнита, сердечник которого соединен с запорным элементом.

Новизну авторы и заявитель усматривают в том, что к эластичному к эластичному распределительному элементу, служащему для перекачки текучих сред, подведены расположенные в плоскости вращения ротора каналы, из которых поступает приводная среда в момент засорения эластичного распределительного элемента посторонними включениями. Момент начала засорения фиксируется датчиками, которые изготовлены в виде подпружиненных и вставленных в пазы ротора кареток с роликами, прижимающими эластичный распределительный элемент к опорной поверхности корпусной детали. В месте засорения эластичного распределительного элемента происходит его выпучивание - неровность, наезжая на которую ролик, преодолев сопротивление пружины, перемещает каретку, которая замыкает контакты исполнительного механизма, обеспечивающего подачу приводной среды при помощи внешнего пневмоисточника через те каналы, выходы которых в полость эластичного распределительного элемента находятся в зоне задержки посторонних включений. Приводная среда, например воздух, газ, вода или какая-либо жидкость, способствует рассредоточению затора из посторонних включений и удалению их наружу вместе с перекачиваемой насосом текучей средой, так как обратный клапан в момент очистки полости эластичного распределительного элемента препятствует движению среды в противоположном направлении.

Заявленное решение не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии данного решения критерию "изобретательский уровень".

Данное техническое решение может быть использовано в различных областях народного хозяйства для перекачки текучих сред, что позволяет сделать вывод о соответствии решения критерию "промышленная применимость".

Сущность изобретения поясняется чертежами, где на фиг. 1 приведен насос, разрез плоскостью, перпендикулярной оси ротора; на фиг. 2 - сечение А-А на фиг. 1; на фиг. 3 - сечение Б-Б на фиг. 1.

Перистальтический насос содержит корпусную деталь 1, на опорной поверхности которой расположен эластичный распределительный элемент 2, снабженный на входе обратным клапаном 3 и взаимодействующий с роликами 4, которые установлены в каретках 5. Каретки 5 вставлены в пазы ротора 6 с возможностью радиального перемещения и взаимодействуют с пружинами 7. В корпусной детали 1 в плоскости вращения ротора 6 выполнены каналы 8, которые герметично соединены на выходе с полостью эластичного распределительного элемента 2, а на входе - с внешним пневмоисточником (не показан) через запорные элементы 9. Каждый из запорных элементов 9 кинематически связан с соответствующей подпружиненной кареткой 5 через исполнительный механизм 10, который выполнен в виде электромагнита, сердечник которого соединен с запорным элементом 9. Электромагнит подключен к электрической цепи, состоящей из источника питания, подпружиненного подвижного 11 и неподвижного 12 контактов. Контакты 11 и 12 прикреплены к корпусной детали 1 насоса. На каретке 5 закреплен толкатель 13, который способен при работе насоса замыкать контакты 11 и 12 в момент засорения распределительного элемента 2 посторонними включениями. Запорные элементы 9 соединены трубопроводом 14 через вентиль 15 с баком 16, на котором смонтированы манометр 17, заливная горловина 18 и вентиль 19, соединенный с внешним пневмоисточником. Полость трубопровода 14 и бак 16 заполнены приводной средой, например воздухом, газом, водой или какой-либо жидкостью-растворителем текучей среды. Манометр 17 служит для регистрации давления приводной среды в полости трубопровода 14 и бака 16.

При подготовке насоса к работе необходимо полости трубопровода 14 и бака 16 заполнить приводной средой. Для этого открывают вентили 15 и 19. Если в качестве приводной среды используют жидкость, то ее заливают через горловину 18 до уровня, не превышающего положение вентиля 19, и закрывают горловину 18. Приводят ротор 6 насоса в движение и подают от внешнего пневмоисточника через вентиль 19 воздух или другой газ, используемый в качестве приводной среды. Попеременно искусственно замыкают контакты 11 и 12 и тем самым с помощью электромагнита открывают запорные элементы 9. В результате приводная среда поступает из бака 16 через вентиль 15 в трубопровод 14, а из него - через запорные элементы 9 в каналы 8 и полость эластичного распределительного элемента 2, откуда под действием роликов 4 ротора 6 выдавливается наружу - на выход, так как движению приводной среды в противоположном направлении препятствует обратный клапан 3. Устройство готово к работе.

Устройство работает следующим образом.

При вращении ротора 6 ролики 4 воздействуют на эластичный распределительный элемент 2, вызывая в нем бегущую волну деформации, под воздействием которой происходит перекачивание текучей среды. При задержке посторонних включений внутри эластичного распределительного элемента 2 на его внешней поверхности образуется утолщение, наезжая на которое ролик 4, преодолев сопротивление пружины 7, перемещает каретку 5 в пазах ротора 6. При этом толкатель 13 каретки 5, соединяя контакты 11 и 12, замыкает электрическую цепь и включает в работу исполнительный механизм 10 в виде электромагнита. Сердечник электромагнита открывает запорный элемент 9 и приводная среда под действием давления, развиваемого внешним пневмоисточником и фиксируемого манометром 17, поступает из бака 16 через вентиль 15, трубопровод 14 и соответствующий канал 8 в зону засорения полости эластичного распределительного элемента 2 (фиг. 1, 3). Приводная среда рассредоточивает затор из посторонних включений, которые затем удаляются наружу вместе с перекачиваемой насосом текучей средой. При этом движению среды в противоположном направлении в момент очистки полости эластичного распределительного элемента 2 препятствует обратный клапан 3. После устранения затора внешняя поверхность эластичного распределительного элемента 2 становится выровненной. Ролик 4 под действием пружины 7 перемещается вместе с кареткой 5 и толкателем 13 в рабочее положение (фиг. 2). При этом подвижный контакт 11 под действием своей пружины разъединяется с контактом 12, электрическая цепь размыкается, сердечник электромагнита закрывает запорный элемент 9 и приводная среда перестает поступать в соответствующий канал 8. Насос продолжает работать в обычном режиме с очищенной от посторонних включений полостью эластичного распределительного элемента 2.

Давление приводной среды определяется экспериментально и должно быть минимально необходимым для реализации эффективной очистки полости эластичного распределительного элемента 2. Если при этом давление в его полости оказалось таким высоким, что привело к неполному пережиму роликами 4 эластичного распределительного элемента 2, то следует увеличить жесткость пружин 7, например подложив под них шайбы. Момент начала впрыскивания приводной среды в полость эластичного распределительного элемента 2 можно регулировать путем изменения положения крепления контактов 11 и 12 относительно корпусной детали 1, проворачивая это крепление вокруг оси вращения ротора 6.

Эластичный распределительный элемент 2 может быть выполнен в виде шланга или разъемного разделительного элемента (см. авт. свид. СССР N 393473, F 04 B 43/12, 1971).

В качестве приводной среды может быть использован воздух, какой-либо газ, вода или другая жидкость. Например, если в составе предназначенной для перекачивания текучей среды могут встречаться твердые нерастворимые включения небольшого размера, то можно использовать воздух или газ, а для удаления частиц крупного размера - вязкую жидкость. Если на стенках в полости эластичного распределительного элемента 2 ожидается осаждение вязких сгустков перекачиваемой среды, то в качестве приводной среды следует использовать жидкость-растворитель этой среды.

Таким образом, с использованием предлагаемого устройства появилась возможность осуществлять дистанционно и автоматически промывку эластичного распределительного элемента 2 в процессе работы насоса. Это стабилизирует объемную подачу насоса, увеличивает долговечность эластичного распределительного элемента 2 и надежность работы насоса.

Класс F04B43/12 перистальтического действия 

шланговый насос и картридж шланга для него -  патент 2507417 (20.02.2014)
ротационный вакуумный насос шлангового типа -  патент 2480626 (27.04.2013)
перистальтический насос -  патент 2458250 (10.08.2012)
аспирационный насос для офтальмохирургических систем -  патент 2434608 (27.11.2011)
скважинный перистальтический насос -  патент 2382901 (27.02.2010)
способ перистальтического нагнетания, шланговый насос и шланг -  патент 2372523 (10.11.2009)
перистальтический синусоидальный насос -  патент 2347944 (27.02.2009)
быстрозагружающий шланговый насос -  патент 2341684 (20.12.2008)
роторная машина -  патент 2316674 (10.02.2008)
перистальтический насос -  патент 2312252 (10.12.2007)
Наверх