способ изготовления изделий цилиндрической формы из порошка карбида бора методом горячего прессования

Классы МПК:B22F3/14 с одновременным проведением процесса уплотнения и спекания 
B22F5/10 изделий с полостями или отверстиями, не отнесенных к предыдущим подгруппам
G21C7/04 выгорающих поглотителей
G21F1/08 металлы; сплавы; металлокерамика 
C04B35/563 на основе карбида бора
Автор(ы):, , , , ,
Патентообладатель(и):Государственный научный центр Российской Федерации научно- исследовательский институт атомных реакторов
Приоритеты:
подача заявки:
1999-06-29
публикация патента:

Изобретение относится к порошковой металлургии и может быть использовано для изготовления вкладышей из карбида бора для работы в качестве поглотителей нейтронов в стержнях СУЗ атомных реакторов, например в реакторах БОР-60 и БН-600. Способ заключается в том, что прессование осуществляют в две стадии: предварительное прессование проводят при температуре не выше 2000oC в пресс-форме с величиной внутреннего диаметра на 3-4% меньше требуемого диаметра изделия, окончательное прессование проводят в пресс-форме с внутренним диаметром на 1-2% меньше требуемого диаметра изделия при температуре до 2200oC, при этом выпрессовку изделий из пресс-форм проводят при температуре 700oC. Способ позволяет увеличить срок службы графитовых пресс-форм и получить изделия с размерами и формой, не требующими последующего шлифования.

Формула изобретения

Способ изготовления изделий цилиндрической формы из порошка карбида бора методом горячего прессования в графитовых пресс-формах в вакууме при температуре 1800 - 2200oС и давлении 225 - 300 кг/см2, отличающийся тем, что прессование проводят последовательно в две стадии - предварительно и окончательно, причем предварительное прессование проводят при температуре не выше 2000oС в пресс-форме с величиной внутреннего диаметра на 3 - 4% меньше требуемого диаметра изделия, окончательное прессование проводят в пресс-форме с внутренним диаметром на 1 - 2% меньше требуемого диаметра изделия при температуре до 2200oС.

Описание изобретения к патенту

Изобретение относится к области порошковой металлургии и может использоваться для изготовления вкладышей из карбида бора для работы в качестве поглотителей нейтронов в стержнях СУЗ атомных реакторов, например в реакторах БОР-60 и БН-600.

Для приготовления изделий из порошка карбида бора метод обычного плавления, сопровождающийся разложением карбида, неприменим. Трудно также использовать для получения плотных изделий обычное спекание брикетов, спрессованных из порошка карбида бора, в связи с его малой пластичностью и большим сопротивлением скольжению на границах зерен вплоть до температур, близких к точке плавления, в сочетании с малым поверхностным натяжением в твердом состоянии.

Именно в связи с малой пластичностью карбида бора, спекание осуществляется методом горячего прессования, т.е. нагреванием под давлением, превосходящим критические напряжения при температурах, относительно близких к температуре плавления, по крайней мере выше 2000oC.

Известны методы горячего прессования из порошка карбида бора (И.Т. Остапенко и др. Уплотнение порошка карбида бора при горячем прессовании. - Порошковая металлургия, 1979, N 5, с. 38 - 43. И.А. Байрамашвили и др. Исследования структуры и некоторых свойств высокочистого карбида бора. - В сб. Бор: получение, структура и свойства. - М.: Наука, 1974, с. 177-180).

Сущность данных методов заключается в следующем. Порошок карбида бора засыпается в графитовую пресс-форму, которая устанавливается в установку горячего прессования. Процесс проводят в вакууме при температуре 1800 - 2200oC и давлении 225 - 350 кг/см2. После охлаждения пресс-форму извлекают из установки и выпрессовывают спеченное изделие.

Известные методы горячего прессования изделий из порошка карбида бора имеют следующие недостатки:

- высокие температуры (до 2200oC) и давления прессования (до 350 кг/см2) приводят к быстрому выходу из строя и разрушению дорогостоящих графитовых пресс-форм как непосредственно в процессе прессования, так и при извлечении изделия из пресс-формы после прессования; в основном пресс-формы выдерживают максимум 2 прессовки;

- в процессе прессования графитовые пресс-формы изменяют свои размеры (увеличивается неравномерно по высоте внутренний диаметр пресс-форм), что требует дополнительного шлифования алмазными кругами образующих поверхностей изделия до необходимых геометрических размеров и формы с безвозвратными потерями (до 30%) дорогостоящего материала - карбида бора.

Целью изобретения является:

- увеличение срока службы графитовых пресс-форм;

- максимальное уменьшение количества изделий, требующих шлифования образующихся поверхностей после прессования;

- сокращение или полное исключение безвозвратных потерь карбида бора при шлифовании за счет минимального изменения геометрических размеров пресс-формы после прессования.

Поставленная цель достигается тем, что процесс прессования проводят не за один цикл, а последовательно, в две стадии. Причем предварительное прессование проводят в пресс-формах с внутренним диаметром, размер которого на 3 - 4% меньше требуемого диаметра изделия при температуре до 2000oC, а окончательное прессование проводят в пресс-формах с внутренним диаметром, размер которого на 1 - 2% меньше требуемого диаметра готового изделия при температуре до 2200oC, при этом выпрессовку изделий из пресс-форм в обоих случаях проводят при температуре 700o.

Установка, в которой реализуется предлагаемый способ, состоит из вакуумной камеры и прессового механизма. В вакуумной камере находится графитовая пресс-форма с пуансоном, которая предназначена для механического обжатия порошка карбида бора с одновременным нагревом до 2200oC. Нагрев пресс-формы происходит с помощью графитового нагревателя прямым пропусканием электрического тока. Прессовый механизм предназначен для создания усилия прессования в процессе спекания.

Метод изготовления изделия из карбида бора заключается в следующем. Необходимое количество порошка бора засыпается в графитовую пресс-форму, внутренний диаметр которой на 3 - 4% меньше требуемого диаметра изделия. Пресс-форма устанавливается в установку, герметизируется, после чего производится вакуумирование камеры до остаточного давления 1,33способ изготовления изделий цилиндрической формы из порошка   карбида бора методом горячего прессования, патент № 215454910-3 Па. После этого производится нагрев пресс-формы до 2000oC. Затем с помощью прессового механизма через подвижной графитовый пуансон создается давление на порошок до 300 кг/см2. Производится предварительное спекание изделия в течение заданного времени. После охлаждения пресс-форма извлекается из установки, и в специальном устройстве, оснащенном печью сопротивления и винтовым механизмом, изделие извлекается из пресс-формы при температуре 700oC.

Для окончательного прессования ранее спеченного изделия используют пресс-форму, внутренний диаметр которой на 1 - 2% меньше требуемого диаметра готового изделия. В этом случае процесс проводят при температуре до 2200oC при том же усилии прессования. Извлекают изделие из пресс-формы также при температуре 700oC.

Предлагаемый способ был испытан при изготовлении вкладышей из карбида бора (с размерами способ изготовления изделий цилиндрической формы из порошка   карбида бора методом горячего прессования, патент № 2154549 10,8 см; H=5-30) для стержней СУЗ реактора БОР-60. Предварительное прессование проводили в пресс-формах с внутренним диаметром 10,4 мм. Спеченные изделия имели диаметр 10,5 - 10,6 мм и высоту до 25 мм. После окончательного прессования в пресс-формах с внутренним диаметром 10,6 мм 160 вкладышей из 200 шт. имели диаметр 10,7 - 10,8 мм, что соответствовало требованиям конструкторской документации. Высота вкладышей была до 20 мм.

Предлагаемый способ был испытан также при изготовлении вкладышей из карбида бора для стержней СУЗ реактора БН-600. Предварительное прессование проводили в пресс-формах с внутренним диаметром 19,2 мм. Спеченные изделия имели диаметр 19,3 - 19,4 мм и высоту до 30 мм. После окончательного прессования в пресс-формах с внутренним диаметром 19,4 мм 100 вкладышей из 300 шт. имели необходимый диаметр готового изделия 19,5 - 19,6 мм. Высота вкладышей была до 25 мм.

В обоих случаях плотность изделия после предварительного прессования составляла 1,7 - 1,8 г/см3, а после окончательного прессования 2,1 - 2,3 г/см3, что также соответствовало требованиям. Режимы прессования были аналогичны приведенным выше.

Все вкладыши подвергали шлифованию по торцам изделия. Необходимая шлифовка 240 вкладышей из 500 шт. по образующей поверхности была выполнена с минимальными потерями материала изделий - карбида бора. Безвозвратные потери карбида бора составили не более 5%, тогда как при применении аналогичных известных способов потери карбида бора составляют до 30%.

Кроме того, применение предлагаемого способа позволило увеличить ресурс работы графитовых пресс-форм в 3 - 5 раз по сравнению со способом горячего прессования, когда весь процесс происходит в пресс-формах одного размера за 1 цикл, без предварительного прессования. При этом время, затраченное на весь процесс изготовления изделия, начиная от засыпки порошка и до получения готового изделия, было одинаковым.

Класс B22F3/14 с одновременным проведением процесса уплотнения и спекания 

шихта для изготовления материала для сильноточных электрических контактов и способ изготовления материала -  патент 2523156 (20.07.2014)
наноструктурный композиционный материал на основе чистого титана и способ его получения -  патент 2492256 (10.09.2013)
способ производства изделий из порошковых материалов -  патент 2487780 (20.07.2013)
способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов -  патент 2477670 (20.03.2013)
порошковый износостойкий материал и способ его изготовления -  патент 2472866 (20.01.2013)
способ производства заготовок из быстрозакристаллизованных алюминиевых сплавов -  патент 2467830 (27.11.2012)
способ и система для уплотнения порошковых материалов при формовке бурового инструмента -  патент 2466826 (20.11.2012)
абразивная прессовка из поликристаллического алмаза -  патент 2466200 (10.11.2012)
способ получения листового боралюминиевого композита -  патент 2465094 (27.10.2012)
шихта для композиционного катода и способ его изготовления -  патент 2454474 (27.06.2012)

Класс B22F5/10 изделий с полостями или отверстиями, не отнесенных к предыдущим подгруппам

способ изготовления цельнопрессованных втулок подшипников скольжения -  патент 2446914 (10.04.2012)
способ изготовления алмазного инструмента для сверления -  патент 2432229 (27.10.2011)
способ изготовления режущих пластин -  патент 2402407 (27.10.2010)
способ прессования тонкостенных изделий сложной конфигурации -  патент 2364468 (20.08.2009)
способ изготовления спеченных заготовок из тяжелых сплавов на основе вольфрама -  патент 2336973 (27.10.2008)
способ изготовления сложнофигурных тонкостенных спеченных заготовок из тяжелых сплавов на основе вольфрама -  патент 2332279 (27.08.2008)
способ изготовления тонкостенных изделий или изделий с внутренней полостью из композита на основе карбида -  патент 2319580 (20.03.2008)
способ изготовления втулок подшипников скольжения и устройство для его осуществления -  патент 2306197 (20.09.2007)
способ изготовления прессованной порошковой заготовки -  патент 2304036 (10.08.2007)
способ изготовления сложнопрофильных твердосплавных изделий -  патент 2299788 (27.05.2007)

Класс G21C7/04 выгорающих поглотителей

регулирующий стержень ядерного реактора -  патент 2287193 (10.11.2006)
способ осуществления топливного цикла ядерного канального реактора -  патент 2266575 (20.12.2005)
тепловыделяющий элемент ядерного реактора -  патент 2263981 (10.11.2005)
способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем -  патент 2239247 (27.10.2004)
регулирующий орган ядерного реактора на быстрых нейтронах -  патент 2231142 (20.06.2004)
способ осуществления топливного цикла ядерного канального реактора -  патент 2218613 (10.12.2003)
способ осуществления топливного цикла ядерного канального реактора -  патент 2218612 (10.12.2003)
поглощающий элемент ядерного реактора на быстрых нейтронах -  патент 2202131 (10.04.2003)
таблетка ядерного топлива с покрытием (ее варианты), способ нанесения покрытия и установка для осуществления способа -  патент 2131626 (10.06.1999)
способ осуществления топливного цикла ядерного канального реактора -  патент 2117341 (10.08.1998)

Класс G21F1/08 металлы; сплавы; металлокерамика 

Класс C04B35/563 на основе карбида бора

Наверх