способ выделения ароматических углеводородов c8 с введением в бензин высокооктановых кислородсодержащих добавок
Классы МПК: | C10G21/20 азотсодержащие соединения B01D3/34 с одним или несколькими вспомогательными веществами |
Автор(ы): | Сомов В.Е., Залищевский Г.Д., Гайле А.А., Варшавский О.М., Зуйков А.А., Семенов Л.В. |
Патентообладатель(и): | Общество с ограниченной ответственностью Производственное объединение "Киришинефтеоргсинтез" |
Приоритеты: |
подача заявки:
1999-02-15 публикация патента:
20.09.2000 |
Изобретение относится к выделению ароматических углеводородов C8 из ксилольной фракции катализата риформинга путем азеотропной ректификации. В качестве селективного азеотропобразующего компонента используют высокооктановые спирты - этанол, пропанол-2, трет-бутанол или их смеси, взятые в массовом соотношении к насыщенным углеводородам от (10 : 1) до (13 : 1). Полученный дистиллат - азеотропные смеси насыщенных углеводородов с высокооктановыми спиртами без регенерации последних, используют в качестве компонента автомобильного бензина. В результате повышается степень извлечения ксилолов высокой степени чистоты. 1 табл.
Рисунок 1
Формула изобретения
Способ выделения ароматических углеводородов C8 из смесей с насыщенными углеводородами путем азеотропной ректификации, отличающийся тем, что в качестве селективного азеотропобразующего компонента используют высокооктановые спирты - этанол, пропанол-2, третбутанол или их смеси, взятые в массовом соотношении к насыщенным углеводородам сырья от 10 : 1 до 13 : 1, а также тем, что полученный дистиллат - азеотропные смеси насыщенных углеводородов с высокооктановыми спиртами без регенерации последних используют в качестве компонента автомобильного бензина.Описание изобретения к патенту
Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для выделения ароматических углеводородов C8 из ксилольной фракции катализата риформинга с одновременным введением в получаемый бензин высокооктановых кислородсодержащих добавок. В настоящее время арены C8 выделяют из катализата риформинга в основном методом простой ректификации. По данным разработчиков этого процесса степень чистоты выделенных аренов C8 составляет 99,5% мас. при их выходе 90% мас. (Бадьина Н. С. и др. Нефтехимия, 1977, т. 17, N 3, с. 412-415). Однако фактические потери ксилолов на промышленной установке из-за попадания их в дистиллат в составе азеотропных смесей с парафиновыми и нафтеновыми углеводородами с температурой кипения 132-152oC, а также с кубовым остатком колонны выделения суммарных ксилолов достигает 38% мас. Повышение степени извлечения и чистоты ксилолов возможно при использовании вместо простой ректификации процесса азеотропной ректификации. Наиболее близок по технической сущности и достигаемому эффекту к предлагаемому изобретению способ выделения аренов C8 азеотропной ректификацией с метанолом (патент Канады 451985 A, 1948). Этот способ нашел промышленное применение и на российских нефтеперерабатывающих предприятиях. Недостатками данного способа являются существенные потери ксилолов с дистиллатом, вследствие того, что метанол образует с ними тангенциальные азеотропы, а также сложность и энергоемкость регенерации метанола из дистиллата и кубового остатка колонны азеотропной ректификации (Карпеев В.М. и др. Производство ксилолов. М., ЦНИИТЭнефтехим, 1980, 60 с.). Цель изобретения - повышение степени извлечения ксилолов и их чистоты при азеотропной ректификации, а также упрощение технологической схемы процесса и снижение удельных энергозатрат в результате исключения блока регенерации азеотропобразующих компонентов. Поставленная цель достигается при выделении аренов C8 из ксилольной фракции катализата риформинга азеотропной ректификацией с использованием в качестве азеотропобразующих компонентов этанола, пропанола-2, трет-бутанола или их смесей. Эти спирты используются в качестве высокооктановых кислородсодержащих добавок к бензину, поэтому полученный дистиллат предлагается смешивать с другими компонентами автомобильных бензинов без предварительной регенерации спиртов. В качестве сырья использовалась промышленная ксилольная фракция 120-147oC катализата риформинга, содержащая 94.8% мас. ароматических углеводородов C8 и 5.3% мас. насыщенных углеводородов. Азеотропная ректификация с высокооктановыми спиртами и простая ректификация проводились в одинаковых условиях на ректификационной колонке эффективностью 15 теоретических тарелок при флегмовом числе 9. Результаты опытов азеотропной ректификации со спиртами и для сравнения простой ректификации и азеотропной ректификации с метанолом представлены в таблице. Азеотропной ректификацией с этанолом и пропанолом-2 чистые арены C8 без примесей насыщенных углеводородов могут быть выделены при незначительных потерях аренов C8 с дистиллатом - 0,2-0,3% мас. от потенциального содержания их в сырье. Трет-бутанол образует азеотропы не со всеми насыщенными углеводородами, входящими в состав ксилольной фракции катализата риформинга, поэтому полученные в кубовом остатке арены C8 содержат в качестве примесей 4,5% мас. насыщенных углеводородов. Однако при использовании смеси этанола, пропанола-2 и трет-бутанола, взятых в соотношении 33,4 : 33,3 : 33,3% мас., возможно выделение чистых аренов C8 с высоким выходом. Соотношение азеотропобразующих компонентов к сырью находилось в пределах 55,8 - 70% мас. или в пересчете к насыщенным углеводородам сырья - от 10 : 1 до 13 : 1. Пример 1. В кипятильник ректификационной колонны эффективностью 15 теоретических тарелок загружают 60 г фракции 120 - 147oC катализата риформинга, содержащей 94,7% мас. аренов C8, и 42 г этанола. После выхода колонны на рабочий режим, при флегмовом числе 9 и температуре верха колонны 72 - 78oC/760 мм рт.ст. отбирают 45,29 г дистиллата и 56,7 г кубового остатка. Кубовый остаток состоит из чистых аренов C8. Дистиллат имеет следующий состав, % мас.: арены C8 - 0,24; насыщенные углеводороды - 7,02; этанол - 92,74. Состав углеводородной части дистиллата, % мас.: арены C8 - 3,34; насыщенные углеводороды - 96,66. Потери аренов C8 с дистиллатом - около 0,2% мас. от потенциала в сырье. Дистиллат без регенерации этанола может быть использован в качестве высокооктанового компонента автомобильного бензина. Пример 2. В кипятильнике той же ректификационной колонны загружают 67,476 г фракции 120 - 148oC катализата риформинга и 36,65 г пропанола-2. После выхода колонки на рабочий режим, при флегмовом числе 9 и температуре верха колонки 77 - 81,5oC/760 мм рт.ст. отбирают 41, 022 г дистиллата и 61,104 г кубового остатка. Состав кубового остатка, % мас.: арены C8 - 99,62; насыщенные углеводороды - 0,38. Состав дистиллата, % мас.: пропанол-2 - 91,78; арены C8 - 0,097; насыщенные углеводороды - 8,123. Состав углеводородной части дистиллата, % мас.: арены C8 - 1,19; насыщенные углеводороды - 98,81. Потери аренов C8 с дистиллатом - около 0,3% мас. от потенциала в сырье. Дистиллат без регенерации пропанола-2 может быть использован в качестве высокооктанового компонента автомобильного бензина. Пример 3. В кипятильнике той же ректификационной колонки загружают 64,8 г сырья того же состава и 45,36 г смеси этанола, пропанола-2 и трет-бутанола при массовом соотношении спиртов в смеси 33,4 : 33,3 : 33,3%. При работе по той же методике отбирают 48,94 г дистиллата и 61,22 г кубового остатка. Кубовый остаток состоит из чистых аренов C8. Состав дистиллата, % мас.: арены C8 - 0,3; насыщенные углеводороды - 7,0; смесь спиртов - 92,7. Состав углеводородной части дистиллата, % мас.: арены C8 - 4,2; насыщенные углеводороды - 95,8. Дистиллат без регенерации спиртов используется в качестве высокооктанового компонента автомобильного бензина.Класс C10G21/20 азотсодержащие соединения
Класс B01D3/34 с одним или несколькими вспомогательными веществами