устройство для свч-плазменной обработки материалов

Классы МПК:H05H1/30 с использованием внешних электромагнитных полей, например высокой и сверхвысокой частоты
H01L21/3065 плазменное травление; ионное травление
H05B6/64 нагрев с использованием СВЧ
Автор(ы):,
Патентообладатель(и):Институт проблем технологии микроэлектроники и особочистых материалов РАН
Приоритеты:
подача заявки:
1999-03-23
публикация патента:

Устройство для СВЧ-плазменной обработки материалов относится к области плазмохимии и может быть использовано в микроэлектронной промышленности в производстве интегральных схем и дискретных полупроводниковых приборов при травлении и осаждении материалов и выращивании собственного диэлектрика на полупроводниках и металлах. Технический результат - повышение эффективности использования СВЧ-энергии за счет использования как падающей, так и отраженной волн, а также обеспечение двусторонней обработки пластин. В устройстве для СВЧ-плазменной обработки материалов установлен СВЧ-генератор, соединенный через магистральный прямоугольный волновод с плазмотроном волноводного типа на волне Н10, который содержит прямоугольный волновод плазмотрона и диэлектрическую разрядную трубку, расположенную перпендикулярно широкой стенке этого волновода и проходящую через его середину, а также подсоединяемую к ней рабочую камеру. Устройство дополнительно содержит второй аналогичный плазмотрон, расположенный так, что одним своим концом он соединен через прямоугольный волновод плазмотрона с магистральным прямоугольным волноводом и первым плазмотроном с помощью Е-тройника и волноводных поворотов, при этом противоположные концы прямоугольных волноводов плазмотронов соединены между собой с помощью дополнительных волноводных поворотов, а диэлектрические разрядные трубки плазмотронов размещены коаксиально в круглых волноводах, подсоединенных как и диэлектрические разрядные трубки к вакуумной рабочей камере, расположенной между ними. 1 ил.
Рисунок 1

Формула изобретения

Устройство для СВЧ-плазменной обработки материалов, содержащее СВЧ-генератор, соединенный через магистральный прямоугольный волновод с плазмотроном волноводного типа на волне H10, который содержит прямоугольный волновод плазмотрона в диэлектрическую разрядную трубку, расположенную перпендикулярно широкой стенке этого волновода и проходящую через его середину, а также подсоединяемую к ней рабочую камеру, отличающееся тем, что оно дополнительно содержит второй, аналогичный плазмотрон, расположенный так, что одним своим концом он соединен через прямоугольный волновод плазмотрона с магистральным прямоугольным волноводом и первым плазмотроном с помощью Е-тройника и волноводных поворотов, при этом противоположные концы прямоугольных волноводов плазмотронов соединены с помощью дополнительных волноводных поворотов, а диэлектрические разрядные трубы плазмотронов размещены коаксиально в круглых волноводах, подсоединенных, как и диэлектрические разрядные трубки, к вакуумной рабочей камере, расположенной между ними.

Описание изобретения к патенту

Изобретение относится к области плазмохимии и может быть использовано в микроэлектронной промышленности в производстве интегральных схем и дискретных полупроводниковых приборов при травлении и осаждении материалов и выращивании собственного диэлектрика на полупроводниках и металлах.

Известно устройство для СВЧ-плазменной обработки материалов с использованием электронного циклотронного резонанса, состоящее из СВЧ-генератора, прямоугольного волновода, круглого волновода, диэлектрической разрядной трубы, электромагнита и реакционной камеры (К. Suzuki et al. "Mikrowaye Plazma Etching", Japanise Jourmal of Aplied Phusies, vol.l6, N11, 1977, p.1979).

Однако это устройство недостаточно полно использует энергию СВЧ и не дает возможность проводить двустороннюю плазменную обработку материалов.

Известно устройство для СВЧ-плазменной обработки материалов, принятое за прототип, содержащее СВЧ-генератор, соединенный через магистральный прямоугольный волновод с плазмотроном волноводного типа на волне H10, который содержит прямоугольный волновод плазмотрона и диэлектрическую разрядную трубку, расположенную перпендикулярно широкой стенке этого волновода и проходящую через его середину, а также подсоединяемую к ней рабочую камеру ("Теоретическая и прикладная плазмохимия" Полак Л.С. и др., Наука, 1975, стр. 21).

Однако это устройство обладает теми же недостатками, что и устройство, описанное в аналоге.

Предлагаемое изобретение решает задачу повышения эффективности использования СВЧ-энергии за счет использования как падающей, так и отраженной волн, а также обеспечения двусторонней обработки (травления, осаждения, выращивания собственного диэлектрика) пластин.

Поставленная задача достигается тем, что в известном устройстве для СВЧ-плазменной обработки материалов, содержащем СВЧ-генератор, соединенный через магистральный прямоугольный волновод, с плазмотроном волноводного типа на волне H10, который содержит прямоугольный волновод плазмотрона и диэлекрическую разрядную трубку, расположенную перпендикулярно широкой стенке этого волновода и проходящую через его середину, а также подсоединяемую к ней рабочую камеру, новым является то, что оно дополнительно содержит второй аналогичный плазмотрон, расположенный так, что одним своим концом он соединен через прямоугольный волновод плазмотрона с магистральным прямоугольным волноводом и первым плазмотроном с помощью E-тройника и волноводных поворотов, при этом противоположные концы прямоугольных волноводов плазмотронов соединены между собой с помощью дополнительных волноводных поворотов, а диэлектрические разрядные трубки плазмотронов размещены коаксиально в круглых волноводах, подсоединенных как и диэлектрические разрядные трубки к вакуумной рабочей камере, расположенной между ними.

Повышение степени использования СВЧ-энергии, как и возможность одновременной двусторонней плазменной обработки пластин, происходит за счет разделения волны H10, идущей от СВЧ-генератора, на две волны H10, отличающиеся друг от друга по фазе на 180o. В свою очередь, отраженные СВЧ-волны от плазмы в каждом из двух плазмотронов меняют фазу на 180o и совпадают по фазам с падающими волнами в противоположных плечах E-тройника, т.е. отраженная волна одного плазмотрона совпадает с падающей волной для другого плазмотрона и таким образом дает эффект подсоединения дополнительного источника СВЧ-энергии. Замыкание с помощью волноводных поворотов противоположных от E-тройника концов прямоугольных волноводов плазмотронов повышает степень использования уже прошедшей волны аналогично вышеописанному.

На чертеже приведено предлагаемое устройство для СВЧ-плазменной обработки материалов.

Устройство содержит СВЧ-генератор 1, сочлененный через магистральный прямоугольный волновод 2, соединенный E-тройником 3 с помощью волноводных поворотов 4 с прямоугольными волноводами плазмотрона 5, перпендикулярно широкой стенке которых расположены кварцевые разрядные трубки 6, размещенные коаксиально в круглых волноводах 7 и соединенные с вакуумной рабочей камерой 8, расположенной между ними. Противоположные концы прямоугольных волноводов ппазмотронов 5 соединены между собой через волноводные повороты 9.

Устройство работает следующим образом.

СВЧ-волна H10 от генератора 1 по прямоугольному волноводу 2 приходит на E-тройник 3, где разделяется на две волны H10, но с фазами, отличающимися на 180o. Далее эти волны по прямоугольным волноводным поворотам 4 проходят к плазмотронам и по прямоугольным волноводам 5 плазмотронов к области генерации плазмы (пересечению с круглыми волноводами 7 с коаксиально проходящими через них кварцевыми разрядными трубками 6), где происходит их частичное поглощение, отражение и прохождение, и по волноводным поворотам 9 подходят к противоположным плазмотронам. Прошедшие волны поглощаются в противоположных плазмотронах. Отражаясь, волны меняют свою фазу на 180o, движутся к E-тройнику и проходят в его противоположные плечи, в которых совпадают по фазе с падающей волной от генератора после E-тройника. Таким образом, исходные волны циркулируют между плазмотронами, многократно отражаясь до тех пор, пока не поглотятся. В силу того, что используется и прошедшая волна, повышается не только степень использования СВЧ-энергии, но и равномерность плазмы по ее плотности в сечении кварцевой разрядной трубы 6, а значит и равномерность плазменной обработки экспериментального образца в вакуумной рабочей камере 8.

Класс H05H1/30 с использованием внешних электромагнитных полей, например высокой и сверхвысокой частоты

устройство для получения высокочастотного емкостного газового разряда -  патент 2474094 (27.01.2013)
свч плазменный реактор -  патент 2403318 (10.11.2010)
плазменная горелка для получения синтетического диоксида кремния -  патент 2391298 (10.06.2010)
устройство для генерации регулируемого импульсного тока -  патент 2352054 (10.04.2009)
многокатушечная индукционная плазменная горелка с твердотельным источником питания -  патент 2295206 (10.03.2007)
свч плазмохимический реактор -  патент 2270536 (20.02.2006)
способ обработки дисперсных термопластичных материалов индукционно связанной плазмой и способ формирования потока материала для его осуществления -  патент 2257689 (27.07.2005)
сверхвысокочастотный плазмотрон -  патент 2251824 (10.05.2005)
свч-плазмохимический реактор -  патент 2225684 (10.03.2004)
высокоскоростной способ осаждения алмазных пленок из газовой фазы в плазме свч-разряда и плазменный реактор для его реализации -  патент 2215061 (27.10.2003)

Класс H01L21/3065 плазменное травление; ионное травление

устройство для плазмохимического травления -  патент 2529633 (27.09.2014)
способ плазмохимического травления материалов микроэлектроники -  патент 2456702 (20.07.2012)
устройство для локального плазмохимического травления подложек -  патент 2451114 (20.05.2012)
состав газовой смеси для формирования нитрид танталового металлического затвора методом плазмохимического травления -  патент 2450385 (10.05.2012)
способ локальной плазмохимической обработки материала через маску -  патент 2439740 (10.01.2012)
способ локального плазмохимического травления материалов -  патент 2436185 (10.12.2011)
устройство для микроволновой вакуумно-плазменной обработки конденсированных сред на ленточных носителях -  патент 2419915 (27.05.2011)
реактор для плазменной обработки полупроводниковых структур -  патент 2408950 (10.01.2011)
способ удаления органических остатков с пьезоэлектрических подложек -  патент 2406785 (20.12.2010)
устройство для плазмохимической обработки материалов -  патент 2395134 (20.07.2010)

Класс H05B6/64 нагрев с использованием СВЧ

Наверх