способ измерения расхода жидкости
Классы МПК: | G01F1/58 электромагнитными измерителями скорости потока |
Автор(ы): | Кирпичников А.П., Журавлева Н.Г. |
Патентообладатель(и): | ЗАО "АВТЭКС" |
Приоритеты: |
подача заявки:
1999-09-13 публикация патента:
10.10.2000 |
Изобретение может быть использовано для определения расхода диэлектрических и слабопроводящих жидких сред с помощью электромагнитных расходомеров. В процессе формирования информационного сигнала по значениям ЭДС индукции определяют величину приращения скорости потока контролируемой жидкости за фиксированный интервал времени и изменяют напряженность возбуждаемого электромагнитного поля в зависимости от полученной величины приращения, а также от текущего значения скорости потока, параметров контролируемой жидкости или параметров, характеризующих условия измерения. Изменение напряженности осуществляют из условия достижения ее возможного минимума при заданной для текущего значения приращения скорости потока величине погрешности информационного сигнала. Изобретение обеспечивает значительное снижение затрат энергии на возбуждение поля в случае контроля постоянных или квазипостоянных расходов. 5 з.п. ф-лы, 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
1. Способ измерения расхода жидкости, включающий возбуждение электромагнитного поля в потоке контролируемой жидкости, измерение наведенной на системе электродов ЭДС и формирование информационного сигнала по измеренной величине ЭДС, отличающийся тем, что в процессе формирования информационного сигнала по полученным значениям ЭДС определяют величину приращения скорости потока контролируемой жидкости за фиксированный интервал времени и изменяют напряженность возбуждаемого электромагнитного поля в зависимости от полученной величины приращения из условия достижения минимума напряженности возбуждаемого электромагнитного поля при заданной для данного текущего значения приращения скорости потока контролируемой жидкости величине погрешности информационного сигнала. 2. Способ по п.1, отличающийся тем, что при определении минимума напряженности возбуждаемого электромагнитного поля учитывают текущее значение скорости потока контролируемой жидкости, и/или параметры контролируемой жидкости, и/или параметры, характеризующие условия измерения скорости потока контролируемой жидкости. 3. Способ по п.1 или 2, отличающийся тем, что величину приращения скорости потока контролируемой жидкости за фиксированный интервал времени определяют по текущему значению производной по времени от скорости потока контролируемой жидкости. 4. Способ по любому из пп.1 - 3, отличающийся тем, что изменение напряженности возбуждаемого электромагнитного поля осуществляют в прямо пропорциональной зависимости от величины приращения скорости потока контролируемой жидкости за фиксированный интервал времени. 5. Способ по п.4, отличающийся тем, что в случае, когда приращение скорости потока контролируемой жидкости за фиксированный интервал времени меньше порогового значения, проводят снижение напряженности возбуждаемого электромагнитного поля. 6. Способ по любому из пп.1 - 5, отличающийся тем, что измерение напряженности возбуждаемого электромагнитного поля осуществляют дискретно при выходе величины приращения скорости потока контролируемой жидкости за фиксированный интервал времени из заданного диапазона.Описание изобретения к патенту
Изобретение относится к области измерительной техники и может быть использовано для определения расхода жидких сред с помощью электромагнитных расходомеров. Известные способы определения расхода жидкости с использованием электромагнитных расходомеров включают возбуждение электромагнитного поля в потоке контролируемой жидкости, измерение наведенной на системе электродов ЭДС и формирование информационного сигнала, пропорционального расходу контролируемой жидкости (см. пат. США N 3479871, 73-194, 1969). Недостатком известных способов определения расхода является их высокая энергоемкость, обусловленная тем, что величину напряженности возбуждаемого поля (величину тока возбуждения) выбирают из условия достижения максимально допустимой для данного прибора погрешности, т.е. максимальной. Наиболее близким к предложенному является способ определения расхода жидкости, включающий периодическое возбуждение электромагнитного поля в потоке контролируемой жидкости, измерение наведенной на системе электродов ЭДС и формирование информационного (выходного) сигнала по измеренной величине ЭДС, пропорционального контролируемой величине расхода (см. а.с. N 1522041, G 01 F 1/58, 1988). Недостатком известного способа также является невозможность в полной мере минимизировать мощность, затрачиваемую на возбуждение электромагнитного поля в потоке контролируемой жидкости. Это объясняется тем, что в известном способе снижение мощности, расходуемой на возбуждение поля, достигается за счет импульсной формы тока возбуждения и не зависит от измеряемой величины, условий измерения и т.п. Поэтому, даже допустив, что известный способ обеспечивает декларируемое снижение энергозатрат в два раза, дальнейшего их снижения он не обеспечивает. Таким образом, техническим результатом, ожидаемым от использования предлагаемого способа является снижение затрат энергии на возбуждение электромагнитного поля в потоке контролируемой жидкости. 1. Указанный результат достигается тем, что в процессе формирования информационного сигнала по полученным значениям ЭДС определяют величину приращения скорости потока контролируемой жидкости за фиксированный интервал времени и изменяют напряженность возбуждаемого электромагнитного поля в зависимости от полученной величины приращения из условия достижения минимума напряженности возбуждаемого электромагнитного поля при заданной для данного текущего значения приращения скорости потока контролируемой жидкости величине погрешности информационного сигнала. Кроме того, при определении минимума напряженности возбуждаемого электромагнитного поля учитывают текущее значение скорости потока контролируемой жидкости, и/или параметры контролируемой жидкости, и/или параметры процесса измерения, и/или параметры, характеризующие условия измерения скорости потока контролируемой жидкости. Кроме того, величина приращения скорости потока контролируемой жидкости за фиксированный интервал времени может определяться по текущему значению производной по времени от скорости потока контролируемой жидкости. При этом изменение напряженности возбуждаемого электромагнитного поля может производиться в зависимости от интегрального значения производной по времени от скорости потока контролируемой жидкости. Допускается также снижение напряженности возбуждаемого электромагнитного поля производить в случае, когда приращение скорости потока контролируемой жидкости за фиксированный интервал времени меньше порогового значения. Рекомендуется также изменение напряженности возбуждаемого электромагнитного поля осуществлять в прямо пропорциональной зависимости от величины приращения скорости потока контролируемой жидкости за фиксированный интервал времени. Кроме того, изменение напряженности возбуждаемого электромагнитного поля может осуществляться дискретно, при выходе величины приращения скорости потока контролируемой жидкости за фиксированный интервал времени из заданного диапазона. Кроме того, очередное включение напряженности возбуждаемого электромагнитного поля может производиться через интервал времени, обратно пропорциональный текущему значению приращения скорости потока контролируемой жидкости, а промежуточные значения информационного сигнала определяют интерполяцией. И, наконец, очередное включение напряженности возбуждаемого электромагнитного поля может производиться через интервал времени, пропорциональный интегралу от частного от деления заданной для текущего значения скорости потока контролируемой жидкости погрешности измерения и текущего значения приращения скорости потока контролируемой жидкости за фиксированный интервал времени. На фиг. 1 приведена блок-схема, поясняющая две возможных реализации устройства для осуществления предлагаемого способа, на фиг.2 показаны зависимости скорости потока контролируемой жидкости и тока возбуждения от времени. Устройство (фиг. 1) содержит систему 1 электродов (два и более электродов), входной преобразователь (АЦП) 2 (одно- или многоканальный), блок 3 обработки, интегратор 4, блок 5 дифференцирования, блок 6 определения скорости изменения, блок 7 масштабирования, функциональный преобразователь 8, выходной преобразователь (ЦАП) 9 (также одно- или многоканальный). Элементы 3-8 образуют процессор 10 с выходной шиной 11 и информационным входом (шиной) 12. Через корпус 13 измерителя протекает поток 14 контролируемой жидкости. Выход преобразователя 9 соединен со входом блока 15 возбуждения. Элементы 1-4 соединены последовательно и образуют измерительный канал. Выход блока 3 соединен также со входом блока 5, выход которого подключен через блок 6 к первому входу блока 7, второй вход которого соединен с шиной 12, а выход - со входом преобразователя 8, последовательно соединенного с преобразователем 9 и блоком 15. Выход блока 3 может быть подключен также ко второму входу блока 8 (фиг. 1). На выходе блока 3 формируется сигнал q, пропорциональный текущему значению скорости потока контролируемой жидкости. Примеры осуществления способа рассмотрим при описании работы устройства. С помощью блока 15 в рабочем сечении корпуса 13 возбуждается электромагнитное поле. В результате, при протекании потока 14 на системе 1 возникает наведенная ЭДС, амплитуда которой зависит от скорости потока жидкости. Код (или сигнал), пропорциональный величине ЭДС, поступает на вход процессора 10, где из него формируется величина, пропорциональная скорости потока q, и рассчитывается расход Q. Процессор 10 формирует также код (сигнал), поступающий на преобразователь 9 и определяющий напряженности возбуждающего поля (ток возбуждения). В этой части устройство работает, как любой известный электромагнитный расходомер. Однако в отличие от известных решений в предложении производится регулировка (изменение) тока возбуждения до минимально возможного с учетом приращения величины q за фиксированный интервал времени, т. е. контролируется и используется для снижения потерь энергии скорость изменения расхода. Так, во многих случаях расходомеры используют для определения расхода, длительное время остающегося постоянным или квазипостоянным. В этих условиях современные процессорные средства обработки и фильтрации легко выделяют полезный сигнал на фоне шумов и флуктуаций, что позволяет путем прогнозирования, интерполяции с достаточной точностью рассчитывать общий расход даже при малых величинах тока возбуждения. В то же время все переходные процессы, характеризующиеся значительными приращениями скорости потока, должны отслеживаться с существенно меньшей погрешностью. Процессор 10 может определять величину приращения скорости потока просто как разность соседних ее значений (в более сложном случае интервал, на котором производится определение приращения, должен быть обратно пропорционален предшествующему значению приращения) и устанавливать величину тока по априорно заложенной и/или поступающей на шину 12 зависимости тока от величины приращения (фиг.2). Независимо от того, выполнен процессор 10 в виде микропроцессорного цифрового блока или аналоговым, его работа может быть описана с использованием блок-схемы, показанной на фиг.1 и отражающей в первом случае один из возможных алгоритмов, а во втором - блок-схему с соответствующими элементами. Поэтому рассмотрим работу устройства, изображенного на фиг.1, более подробно. Информационная составляющая сигнала, пропорциональная скорости потока q, выделяется в блоке 3 и после масштабирования и интегрирования с постоянной времени t1 поступает на выходную шину 11, определяя расход Q контролируемой жидкости. Тот же сигнал после дифференцирования (или определения приращения за малый интервал времени) в блоке 5 поступает в блок 6, где, например, путем фиксации максимального значения на интервале времени
при отсутствии управляющего сигнала на шине 12 текущее значение




пусть в момент времени t1 на шине 12 появляется код (сигнал), свидетельствующий о необходимости увеличить точность измерения расхода до максимальной (например, вследствие перехода из резервного режима в основной), тогда блок 7 увеличивает до максимального масштабный коэффициент или просто формирует на выходе максимальный выходной сигнал и ток возрастает до максимального (фиг.2);
если при формировании величины тока учитывается и текущее значение скорости потока, например, с целью дополнительно снизить энергозатраты при больших величинах расхода, когда высокой точности измерения не требуется, ток может быть определен из выражения: I=k






T = k



Класс G01F1/58 электромагнитными измерителями скорости потока