газоразрядный коммутатор тока
Классы МПК: | H01T1/20 средства инициирования электрической дуги или облегчения запуска разрядников H01T2/02 содержащие пусковой электрод или дополнительный искровой разрядник H01J17/00 Газонаполненные разрядные приборы с твердыми катодами |
Автор(ы): | Юдаев Ю.А. |
Патентообладатель(и): | Рязанская государственная радиотехническая академия |
Приоритеты: |
подача заявки:
1999-07-09 публикация патента:
20.10.2000 |
Изобретение относится к области газоразрядной техники и может быть использовано для создания управляемых сильноточных наносекундных коммутаторов тока. Техническим результатом является улучшение временных и энергетических характеристик газоразрядных коммутаторов тока. Это достигается за счет введения металлической перегородки, которая разделяет коммутатор на два объема по газовому составу, но связывает по электрическому воздействию, причем в одном объеме размещены электроды, коммутирующие электрический ток, - катод и анод, в другом объеме, окруженном металлическим экраном, находится управляющий электрод и происходит формирование управляющего воздействия в виде волны ионизации. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
Газоразрядный коммутатор тока, содержащий катод, анод и управляющий электрод, отличающийся тем, что в него введена металлическая перегородка, которая разделяет газоразрядный коммутатор тока на два объема по газовому составу, но связывает по электрическому воздействию, причем в одном объеме, заполненном водородом до давления 50 - 200 Па, размещены коммутирующие электрический ток катод и анод, а в другом объеме протяженностью не менее шести диаметров объема, служащем для формирования управляющего воздействия в виде волны ионизации и заполненном неоном до давления 800 - 1100 Па, размещен управляющий электрод.Описание изобретения к патенту
Изобретение относится к области газоразрядной техники, в частности к быстродействующим управляемым коммутаторам тока с расположением управляющего электрода и электродов, коммутирующих ток в изолированных друг от друга объемах. Известны газоразрядные коммутаторы тока (тиратроны, таситроны, управляемые разрядники, псевдоискровые разрядники и др.), в которых управляющий электрод находится в одном объеме с катодом и анодом и расположен между ними /1,2,4/. Управление такими приборами осуществляется с помощью подачи импульса напряжения положительной /1/ или отрицательной /2/ полярности на управляющий электрод, который находится в одном объеме с электродами, проводящими ток (катодом и анодом). Для увеличения скорости перевода коммутатора в проводящее состояние используют, например, облучение межэлектродного промежутка ультрафиолетом, лазерным излучением, введением в разрядную камеру ВЧ- или СВЧ-излучений /3/. Перечисленные способы накладывают определенные условия на конструкцию коммутаторов и направлены на увеличение быстродействия коммутирующих приборов, т. к. приводят к практически одновременному образованию заряженных частиц во всем межэлектродном пространстве, но являются достаточно сложными при практической реализации. Наибольшее распространения получили коммутаторы с расположением управляющего электрода в одном объеме с катодом и анодом (тиратронная конструкция) /1/ и подачей управляющего импульса на управляющий электрод. Недостатками известных приборов являются:1. Ограниченная скорость перехода прибора в проводящее состояние, связанная с тем, что образование плазмы происходит последовательно - сначала между катодом и управляющим электродом с дальнейшим переходом разряда на анод. Характерное время перехода в проводящее состояние приборов подобного класса составляет 15-100 нс /4/, что в ряде случаев снижает КПД устройства (например, при малой емкости накопителя энергии, при работе коммутаторов в схемах питания лазеров на самоограниченных переходах и др.). 2. Наличие управляющего электрода в межэлектродном пространстве приводит к дополнительным потерям, к выделению на нем мощности из разряда, что приводит к повышенной эрозии электрода и сокращению срока службы коммутатора. Данное изобретение направлено на увеличение быстродействия газоразрядного коммутатора тока, уменьшение стартовых потерь, уменьшение тепловой нагрузки на электроды и увеличение временной стабильности параметров коммутатора. Технический результат достигается за счет введения разделительной перегородки и разделения коммутатора на два объема, в одном из которых располагается управляющий электрод и формируется управляющее воздействие - волна ионизации /5/, а в другом располагаются электроды, коммутирующие ток - катод и анод. Давление в этих объемах может быть различным исходя из оптимальных условий формирования волны ионизации и назначения коммутатора. Предлагаемый коммутатор показан на фиг. 1. Коммутатор состоит из двух изолированных объемов 1 и 2, первый из которых служит для формирования управляющего воздействия в виде волны ионизации, во втором объеме размещены электроды, коммутирующие электрический ток. Для стабилизации параметров волны ионизации и лучшего согласования генератора управляющих импульсов с первым объемом он окружен металлическим экраном 3, крепящимся на изоляторах 4. Управляющий импульс подается на электрод 5. Протяженность объема 1 должна быть не менее 6 диаметров этого объема, т. к. при этом происходит максимальное обострение градиента потенциала во фронте волны ионизации и формирующийся управляющий импульс имеет максимальную эффективность /6/. Объемы разделены металлической пластиной (перегородкой) 6, которая разделяет коммутатор по газовому составу, но связывает по электрическому воздействию. Сильноточный разряд формируется между катодом 7 и анодом 8. Объем 1 заполнен неоном до давления 800 - 1100 Па, объем 2 - водородом до давления 50 - 200 Па. В объеме 1 при подаче слаботочного управляющего импульса Uупр отрицательной полярности амплитудой более 5 кВ при длительности переднего фронта менее 50 нс формируется волна ионизации. При перемещении в объеме 1 волны ионизации происходит обострение переднего фронта переносимого тока и градиента потенциала до 2-4 нс. При достижении пластины 6 волна ионизации наводит на ней потенциал UR2, проникает в объем 2 и через отверстия в катоде в разрядную область между катодом и анодом - замыкает разрядный канал, что приводит к возникновению сильноточного разряда с током 1н за 2-4 нс. Один из вариантов включения газоразрядного коммутатора в электрическую цепь для коммутации электрического тока показан на фиг. 2. Электрическая схема включения состоит из генератора управляющих импульсов 9, источника питания 10, зарядного сопротивления R1, накопителя энергии С1, сопротивления в цепи перегородки R2 и нагрузки R3. На фиг. 3. приведены временные диаграммы, поясняющие работу газоразрядного коммутатора тока: формы управляющего напряжения Uупр, формы напряжения на перегородке UR2 и тока в нагрузке Iн, изменяющейся во времени t. Список литературы
1. Ворончев Т.А. Импульсные тиратроны.-М.: Сов. радио. - 1958. -164 с. (прототип). 2. Киселев Ю.В., Черепанов В.П. Искровые разрядники. - М.: "Сов. радио", 1976. - 70 с. 3. Заявка 2.179.492, МКИ H 01 J 17/30, Великобритания, Тиратрон. Изобретение стран мира, 1988, вып. 128, N 2, с. 22, (прототип). 4. Головина Л.С., Полякова А.А. Обзоры по электронной технике. Сер. 4. ЭВ и ГРП. Вып. 1 (345). Водородные тиратроны за рубежом. - М., ЦНИИ "Электроника", 1976. - 37 с. 5. Василяк Л.М., Костюченко С.В., Кудрявцев Н. Н., Филюгин И. В. Высокоскоростные волны ионизации при электрическом пробое // УФН. 1994. Т. 164, N 3. С.263-285. 6. Юдаев Ю. А. Волны ионизации и их использование для управления быстродействующими газоразрядными коммутаторами: Автореф. дис. канд. техн. наук. - Рязань: РГРТА. 1994. 16 с.
Класс H01T1/20 средства инициирования электрической дуги или облегчения запуска разрядников
коммутирующее устройство - патент 2366051 (27.08.2009) | |
коммутирующее устройство - патент 2327265 (20.06.2008) | |
коммутирующее устройство - патент 2321931 (10.04.2008) | |
микроэлектромеханические устройства - патент 2296403 (27.03.2007) | |
управляемый газовый коммутатор - патент 2254652 (20.06.2005) | |
газонаполненный разрядник - патент 2234780 (20.08.2004) | |
разрядник - патент 2227951 (27.04.2004) | |
способ управления импульсными газоразрядными коммутаторами тока - патент 2152115 (27.06.2000) | |
способ защиты от атмосферных электрических перенапряжений - патент 2144747 (20.01.2000) | |
устройство для получения электрической искры в газообразных и жидких средах - патент 2105402 (20.02.1998) |
Класс H01T2/02 содержащие пусковой электрод или дополнительный искровой разрядник
управляемый разрядник - патент 2520614 (27.06.2014) | |
способ и устройство запуска последовательного искрового разрядника - патент 2395884 (27.07.2010) | |
разрядник - патент 2339139 (20.11.2008) | |
коммутирующее устройство - патент 2327265 (20.06.2008) | |
устройство и способ для отпирания искрового промежутка - патент 2315406 (20.01.2008) | |
управляемый газоразрядный прибор - патент 2300157 (27.05.2007) | |
управляемый газовый коммутатор - патент 2254652 (20.06.2005) | |
многоканальный рельсовый разрядник - патент 2247453 (27.02.2005) | |
разрядник - патент 2227951 (27.04.2004) | |
управляемый разрядник (варианты) - патент 2213400 (27.09.2003) |
Класс H01J17/00 Газонаполненные разрядные приборы с твердыми катодами