система сканирующая

Классы МПК:A61B18/20 лазерного
A61N5/067 с использованием лазерного луча
Автор(ы):, , , , ,
Патентообладатель(и):Государственное унитарное предприятие "Конструкторское бюро приборостроения"
Приоритеты:
подача заявки:
1999-07-21
публикация патента:

Изобретение относится к медицинской технике, а именно к лазерным аппаратам. Система сканирующая содержит хирургический CO2-лазер, генерирующий непрерывный луч, манипулятор, развертывающее устройство с блоком управления, закрепленным на конце манипулятора, и линзу, фокусирующую излучение на биоткань. Развертывающее устройство состоит из двух оптических клиньев с разной клиновидностью, вклеенных в зубчатые колеса, находящиеся в зацеплении с двухвенцовой шестерней, закрепленной на валу электродвигателя гайкой, в результате чего, вращаясь в одну сторону с разной угловой скоростью друг относительно друга, клинья сканируют проходящий лазерный пучок по спирали. Технический результат - упрощение конструкции и достижение более равномерного облучения ткани. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

Система сканирующая, состоящая из аппарата, содержащего хирургический СО2-лазер, генерирующий непрерывный луч и манипулятор, передающий лазерное излучение, развертывающего устройства с блоком управления, закрепленного на конце манипулятора, и линзы, фокусирующей излучение на биоткань, отличающаяся тем, что развертывающее устройство состоит из двух оптических клиньев с разной клиновидностью, вклеенных в зубчатые колеса, которые находятся в зацеплении с двухвенцовой шестерней, закрепленной на валу электродвигателя, управляемого по программе в пределах цикла, определяемого срабатыванием датчиков взаимного положения клиньев, с возможностью вращения оптических клиньев в одну сторону с переменными угловыми скоростями Wi и wi, но при отношении скоростей Wi/wi = const, и обеспечением развертывания проходящего лазерного луча по спирали.

Описание изобретения к патенту

Изобретение относится к медицинской технике - лазерные медицинские аппараты, однако может быть использовано и в других областях приборостроения.

Известен лазерный хирургический аппарат [1], содержащий хирургический лазер, пилотный лазер, устройство совмещения пучков обоих лазеров и манипулятор, снабженный фокусирующей оптической системой. В аппарат введена формирующая оптическая система, расположенная между хирургическим лазером и манипулятором, кинематически связанный с ней привод и устройство управления приводом. Формирующая оптическая система содержит сменные, вводимые в пучок или перемещаемые вдоль оси, линзы. При смене или перемещении линз приводом изменяется размер перетяжки хирургического пучка на выходе манипулятора. Смена размера перетяжки может осуществляться оперативно в ходе хирургического воздействия. Положение перетяжки на выходе манипулятора не изменяется при смене или перемещении линз. Указание точки фокусировки осуществляется при помощи двух пилотных пучков, пересекающихся в перетяжке хирургического пучка на выходе манипулятора. Два пилотных пучка получаются расщеплением пучка пилотного лазера и направляются отражателями в манипулятор.

Острота фокусировки излучения хирургического лазера, т. е. размер перетяжки на выходе манипулятора, и мощность излучения определяют условия воздействия на биоткань. Изменяя размер перетяжки, возможно в широких пределах менять скорость реза, объемного испарения, коагуляции биоткани, но глубокое проникновение излучения в ткань может привести к ее термическому некрозу и обугливанию с возможными выделениями и кровотечением и дальнейшему рубцеванию, что ограничивает применение лазера в медицине, особенно в пластической хирургии.

Для уменьшения этих негативных последствий необходимая плотность мощности лазера должна обеспечиваться в течение короткого времени, чтобы избежать повреждения нижележащих слоев ткани, в то же время желательно иметь диаметр пятна не менее 3 мм, чтобы обеспечить управляемость удаления ткани, поскольку меньший диаметр приводит к значительным повреждениям краев и потере контроля над операционным полем.

Наиболее близкой к заявляемому техническому решению является система для удаления облученной части живой ткани без повреждения нижележащих слоев по патенту [2], которая содержит лазер, генерирующий непрерывный CO2-луч, манипулятор, передающий лазерное излучение, развертывающее устройство с блоком управления, закрепленное на конце манипулятора, и линзу, фокусирующую излучение на биоткань. Развертывающее устройство состоит из 2 зеркал, каждое из которых вращается своим двигателем. Зеркала фиксируются на осях двигателей под углом к оси вращения. Двигатели с зеркалами располагаются под углом 45o к лучу хирургического лазера и к плоскости операционного поля. При вращении двигателей с различными скоростями происходит развертывание луча хирургического лазера вдоль двух ортогональных осей по фигурам Лиссажу.

Недостатками этого технического решения являются:

- сложность конструкции;

- форма образца сканирования луча.

Сложность конструкции заключается в необходимости точного взаимного расположения центров вращения зеркал друг относительно друга и в обеспечении точного углового положения каждого зеркала к оси вращения двигателя.

Форма образца сканирования луча, называемая фигурами Лиссажу, представляет ортогонально пересекающиеся эллипсы, что приводит к двойному облучению одного и того же участка ткани.

Задачей предлагаемого изобретения является упрощение конструкции и изменение формы образца сканирования луча для достижения более равномерного облучения ткани.

Для достижения поставленной цели в системе сканирующей, содержащей хирургический CO2-лазер, генерирующий непрерывный луч, и манипулятор, передающий излучение, развертывающее устройство с блоком управления, закрепленное на конце манипулятора, и фокусирующую линзу, развертывающее устройство выполнено в виде двух оптических клиньев с разной клиновидностью, вклеенных в зубчатые колеса, которые находятся в зацеплении с двухвенцовой шестерней, закрепленной на валу электродвигателя, управляемого по программе в пределах цикла, определяемого срабатыванием датчиков взаимного положения клиньев. Электродвигатель вращает оптические клинья в одну сторону с переменными угловыми скоростями Wi и wi, но при Wi / wi = const, что обеспечивает развертывание проходящего лазерного луча по спирали, траектория которой определяется из уравнений:

Xi = Rcos(Witi) + rcos(witi) (1)

Yi = Rsin(Witi) + rsin(witi) (2)

где i - индекс точки на графике траектории сканирования,

R - радиус окружности, получаемой при вращении первого клина,

r - радиус окружности, получаемой при вращении второго клина, причем R > r,

Wi - угловая скорость вращения первого клина,

wi - угловая скорость вращения второго клина,

ti = tmaxi/N - время, прошедшее с начала цикла,

где N - число точек на графике траектории сканирования,

tmax - время, за которое совершается один цикл.

Разность R и r такова, что наименьший радиус траектории отличается от 0 на величину, равную половине диаметра пятна сканируемого излучения.

Диски с пазами, выставленные относительно клиньев, обеспечивают срабатывание датчиков взаимного положения клиньев через равное количество оборотов двигателя, что позволяет управлять скоростью вращения электродвигателя по программе в пределах цикла сканирования, добиваясь более равномерного распределения плотности мощности излучения.

Предлагаемое техническое решение поясняется фиг. 1 - 4, где на фиг. 1 представлен общий вид системы сканирующей, на фиг. 2 представлено развертывающее устройство, на фиг. 3 представлены датчики взаимного положения клиньев и на фиг. 4 представлен образец траектории сканирования луча.

Общий вид системы сканирующей поясняет фиг. 1. Излучение хирургического лазера 1 совмещается с излучением пилотного лазера 2 в устройстве совмещения пучков обоих лазеров 3. Совмещенные лазерные пучки манипулятором 4, на конце которого накидной гайкой 5 закреплено развертывающее устройство 6, доставляются к биоткани и фокусируются линзой 17 в пятно воздействия.

Развертывающее устройство поясняется фиг. 2. Развертывающее устройство состоит из двух оптических клиньев 7 и 8 с разной клиновидностью, вклеенных в зубчатые колеса 9 и 10, кинематически связанные с двухвенцовой шестерней 11, закрепленной на валу электродвигателя 12 гайкой 13. Зубчатые колеса на подшипниках 14 стоят в корпусах 15 и 16, соединенных друг с другом. На конце корпуса 15 находится фокусирующая линза 17. Корпуса помещены в защитные кожуха 18 и 19 со сменным наконечником 20, снабженным штуцером 21 для дымоотвода.

Фиг. 3 поясняет положение дисков с пазами 22 и 23, выставленных относительно клиньев. Совмещение пазов обоих дисков приводит к срабатыванию датчиков взаимного положения клиньев 24 и 25.

Фиг. 4 представляет форму образца сканирования луча, траектория которого описывается уравнениями 1 и 2.

Таким образом, в описанном выше развертывающем устройстве сканирование оптическими клиньями проходящего излучения позволяет в 2 раза снизить ошибку сканирования по сравнению с прототипом, где зеркала должны устанавливаться с половинными углами, а значит и с точностью, в 2 раза большей. Жесткая связь между клиньями, вращаемыми одним двигателем с Wi / wi = const, исключает зависимость от параметров двигателя и значительно облегчает процесс его управления. Все это упрощает конструкцию развертывающего устройства, помогает добиться более равномерного распределения плотности мощности излучения и позволяет считать задачу предлагаемого изобретения выполненной.

Источники информации

1. Лазерный хирургический аппарат, патент РФ N 2090157 C1 от 20.09.97 г. , МКИ A 61 B 17/36, A 61 N 5/16 - аналог.

2. Система для удаления облученной части живой ткани без повреждения нижележащих слоев, патент США 5411502 от 2.05.95 г., МКИ A 61 B 17/36 - прототип.

Класс A61B18/20 лазерного

способ и устройство для контроля над процессом лечения повреждения -  патент 2529395 (27.09.2014)
способ лечения отека рейнке-гайека -  патент 2523344 (20.07.2014)
бреющее устройство с детектором волос -  патент 2521735 (10.07.2014)
способ лечения срединных стенозов гортани паралитической этиологии -  патент 2518679 (10.06.2014)
способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления -  патент 2510248 (27.03.2014)
способ элиминации вируса папилломы человека высокого онкогенного риска для профилактики рака шейки матки и устройство для его осуществления -  патент 2508138 (27.02.2014)
способ лечения больных водянкой оболочек яичка -  патент 2502490 (27.12.2013)
система и способ для применения в стоматологии без оптических коннекторов на панели, а также блок насадок для данной системы -  патент 2501533 (20.12.2013)
устройство для воздействия на глаз лазерным излучением -  патент 2498789 (20.11.2013)
устройство для фотоэпиляции -  патент 2497479 (10.11.2013)

Класс A61N5/067 с использованием лазерного луча

лазерное терапевтическое устройство -  патент 2528659 (20.09.2014)
волоконно-оптический инструмент с изогнутой дистальной рабочей частью -  патент 2528655 (20.09.2014)
способ лечения туберкулезного спастического микроцистиса -  патент 2527905 (10.09.2014)
устройство для воздействия инфракрасным излучением на коллагеновый слой кожи человека с визуализацией процесса -  патент 2527318 (27.08.2014)
способ лечения инфицированных ран и свищей у онкологических больных -  патент 2527175 (27.08.2014)
способ лечения пациентов с заболеваниями пульпы зуба и периодонта -  патент 2526961 (27.08.2014)
способ лечения деструктивных форм хронических верхушечных периодонтитов -  патент 2525702 (20.08.2014)
способ комплексной терапии впервые выявленного туберкулеза легких -  патент 2525580 (20.08.2014)
способ восстановления функций кишечной трубки при синдроме короткой кишки -  патент 2525530 (20.08.2014)
способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления -  патент 2525277 (10.08.2014)
Наверх