способ сортировки минерального сырья и золотосодержащих руд
Классы МПК: | B07C5/346 по радиоактивности B07B15/00 Комбинации устройств для разделения сухими способами сыпучих материалов или штучных изделий, хранимых навалом и пригодных для сортировки как сыпучие материалы B03B13/06 с использованием поглощения или отражения радиоактивного излучения |
Автор(ы): | Федоров Ю.О., Кацер И.У., Короткевич В.А., Коренев О.В., Цой В.П., Ковалев П.И., Тишкевич О.П., Носков И.Г. |
Патентообладатель(и): | ООО "ТЕХНОРОС" |
Приоритеты: |
подача заявки:
1999-05-07 публикация патента:
10.04.2001 |
Способ включает дробление, грохочение с разделением на три класса, рентгенорадиометрическую сепарацию с разделением на обогащенный продукт и хвосты, а сепарацию осуществляют в покусковом и мелкопорционном режиме одновременно с разделением потока на ручьи, при этом в обоих режимах разделение ведут по алгоритму = Ni/NS+KNFe в свободном падении. Мелкопорционную сортировку осуществляют на класс -50(40) +10(5) мм, а покусковую - на класс -150 +50(40) мм, где - величина признака разделения; Ni - число зарегистрированных рентгеновских квантов анализируемого элемента; NS - число импульсов рассеянного первичного излучения; NFe - число рентгеновских квантов, соответствующих излучению железа; К - спектральный коэффициент. Изобретение повышает качество сортировки за счет снижения потерь ценных компонентов при расширении диапазона крупности сортируемого материала. 2 з.п. ф-лы, 2 табл.
Рисунок 1, Рисунок 2
Формула изобретения
1. Способ сортировки минерального сырья и золотосодержащих руд, включающий дробление, грохочение с разделением на три класса, последующую рентгенорадиометрическую сепарацию материала с разделением на обогащенный продукт и хвосты, отличающийся тем, что сепарацию осуществляют одновременно в покусковом и мелкопорционном режимах с разделением мелкопорционного потока на ручьи, при этом в каждом ручье потока выделяют при измерениях дискретные порции в свободном падении с последующим разделением на продукты по степени содержания полезных компонентов, при этом в обоих режимах разделение осуществляют по алгоритму а мелкопорционную сортировку осуществляют на класс -50(40) +10(5) мм, покусковую - на класс -150 +50(40) мм,. где - величина признака разделения;Ni - число зарегистрированных рентгеновских квантов с длиной волны, соответствующей характеристическому излучению анализируемого элемента;
NS - число импульсов рассеянного первичного излучения;
NFe - число зарегистрированных рентгеновских квантов с длиной волны, соответствующей характеристическому рентгеновскому излучению железа;
K - спектральный коэффициент, равный
2. Способ по п.1, отличающийся тем, что при сортировке золотосодержащих руд выделяют несколько элементов, ассоциирующих с золотом, и определение золота в куске производят по логике и/или. 3. Способ по п.1, отличающийся тем, что продукт сепарации объединяют с мелким не сортируемым классом -10(5) мм.
Описание изобретения к патенту
Изобретение относится к сортировке минерально-сырьевых ресурсов, в частности золотосодержащих руд, и может быть использовано в процессах предварительного обогащения руд или разделения на технологические типы и сорта. Известен способ рентгенорадиометрического обогащения полезных ископаемых, представляющий последовательное пропускание кусков перед датчиком первичного -излучения, возбуждение в куске вторичного -излучения от каждого куска и разделение кусков относительно заданного порогового значения критерия обогащения (аналитического параметра), при этом последовательно производят одновременное измерение характеристического флуоресцентного рентгеновского излучения и рассеянного от куска -излучения пропорциональными счетчиками, а в качестве критерия обогащения (аналитического параметра) используют отношение интенсивности характеристического флуоресцентного рентгеновского излучения элементов к интенсивности рассеянного куском -излучения источника, при этом интенсивность рассеянного излучения регистрируют в энергетической области, соответствующей фотопику рассеянного излучения, а при обогащении золотосодержащих руд по генетическому спутнику золота регистрируют характеристическое флуоресцентное рентгеновское излучения K или L серии сопутствующего золоту элемента /авторское свидетельство СССР N 952384, кл. B 07 C 5/34, 1979/. Известный способ рентгенорадиометрического обогащения полезных ископаемых не позволяет осуществлять сепарацию сложных типов руд, вводить в процесс сортировки мелкий класс руды -30(20) мм, вести процесс с высокой производительностью и качеством сортировки. Известен способ порционной сортировки свинцовой руды, реализованный в устройстве для рентгенорадиометрической сортировки руд, представляющий вибротранспортировку руды с последующим движением по наклонному лотку, где куски подвергают облучению от радиоактивного изотопа кадмий-109, фиксируют детектором характеристического излучения свинца, одновременно регистрируют поток рассеянного излучения, представляющий сумму потоков излучения - рассеянного от поверхности кусков руды, характеризующего состав вмещающих пород, и от поверхности титанового лотка, свободного от кусков руды. Величину спектрального отношения (аналитического параметра) с учетом поправок определяют по алгоритмугде - величина спектрального отношения;
Уx - скорость счета импульсов, соответствующая потоку характеристического излучения определяемого элемента;
Уs - скорость счета, соответствующая суммарному потоку рассеянного излучения источника;
У"s - скорость счета, соответствующая потоку излучения, рассеянного от поверхности лотка в зоне облучения, не занятой кусками руды;
K - коэффициент пропорциональности, определяемый экспериментально. По сравнению с эталонным значением элемента производят сравнение величины спектрального отношения и по результатам направляют поток сортируемой руды исполнительным механизмом в различные отсеки бункера /авторское свидетельство СССР N 1028387, кл. B 07 C 5/342, 1981/. Реализованный способ мелкопорционной сортировки руд не обеспечивает необходимого качества сортировки и характерен большими потерями ценного компонента в хвостах сортировки, так как для крупнокускового материала (более 30-50 мм) требуется покусковая, а не мелкопорционная сортировка. При этом для обеспечения высокой производительности руда должна идти широким потоком. Но в этом случае анализируемая порция будет достаточно большой (по массе и размерам), а с увеличением порции снижается различие порции (контрастность) по содержанию ценных компонентов, что снижает качество разделения руды на обогащенный и хвостовой продукты. Наиболее близким к заявляемому является способ посортового извлечения компонентов из кусковых материалов, включающий дробление материала до максимальной крупности 70 - 150 мм, рассев дробленного материала на фракции, радиометрическую сепарацию крупных фракций, заключающуюся в последовательном пропускании кусков перед блоком возбуждения и детектирования, воздействия на куски первичным излучением, регистрации в течение времени полета куском зоны измерения числа импульсов N1 в области спектра вторичного излучения, соответствующей характеристическому излучению идентифицируемого элемента, и в некоторой второй области спектра вторичного излучения, вычислении аналитического параметра с заданным пороговым значением, разделении кусков на основании результатов сравнения с помощью исполнительного механизма, при этом вторую область в спектре вторичного излучения выбирают так, чтобы в ней регистрировались только импульсы характеристического излучения контрольного элемента, а число импульсов Nk используют для вычисления аналитического параметра по формуле = Ni/Kk, при этом радиометрической сепарации подвергают кусковые материалы, крупнее 15 мм, при отношении размера максимального по крупности куска к размеру минимального в отдельном потоке сепарируемого материала, равном 1-3 /авторское свидетельство СССР N 2062666, кл. B 07 C 5/346, 1994/. Известному способу свойственны следующие недостатки: применимость только для узкого круга полезных ископаемых, в которых контрольный элемент по содержанию изменяется незначительно; способ недостаточно производителен, особенно на мелких классах и применим только для материала крупностью выше +15(20) мм, что не позволяет вводить в переработку мелкий класс -15(20) мм. Задача, решаемая изобретением, - повышение качества и производительности сортировки для широкого круга полезных ископаемых, снижение потерь полезного компонента. Задача решается тем, что в способе сортировки минерального сырья в золотосодержащих руд, включающем дробление, грохочение с разделением на три класса, последующую рентгенорадиометрическую сепарацию материала с разделением на обогащенный продукт и хвосты, согласно изобретению сепарацию осуществляют одновременно в покусковом и мелкопорционном режимах с разделением потока в режиме мелкопорционной сортировки на ручьи, при этом измерение потока каждого ручья осуществляют в свободном падении, выделяют при измерениях дискретные порции (микропорции) с последующим разделением сортируемого материала на продукты по степени содержания полезных компонентов, в обоих режимах разделение осуществляют по алгоритму
мелкопорционную сортировку осуществляют на класс крупности -50(40) +10(5), а покусковую на класс -150 +50(40) мм, при этом при сортировке золотосодержащих руд выделяют несколько элементов, ассоциирующих или коррелирующих с золотом, оценку наличия (или отсутствия) золота в куске производят по логике и/или, а продукт сепарации объединяют с мелким несортируемым классом (-5 или -10 мм). Признаки, реализованные для решения задачи:
- сепарацию осуществляют в покусковом и мелкопорционном режимах одновременно, что позволяет улучшить качество сортировки в связи с исключением дополнительного усреднения почти 50% горной массы (мелкого класса - мельче 25 мм), который поступает на мелкопорционную сортировку в реализуемой технологии сразу после грохочения, минуя накопительные емкости, бункеры, склады с сопутствующим дополнительным усреднением;
- разделение мелкопорционного потока на ручьи, при этом в каждом ручье потока выделяют при измерениях дискретные порции в свободном падении, что позволяет повысить качество сортировки при измерениях дискретных микропорций в интервале 0,05 - 0,1 секунды и одновременно избежать влияния на качество измерения окружающих материалов (материала лотков, конвейеров, конструкций);
- разделение осуществляют по алгоритму
алгоритм наиболее объективно учитывает влияние железа при определении элементов с энергиями характеристического излучения близких к FeK (таких как: Cr, Mn, Co, Ni, Cu, Zn), а также существенно повышает достоверность определения анализируемых элементов в случае сортировки материалов с большим различием содержаний железа в кусках (микропорциях);
- мелкопорционную сортировку осуществляют на класс -50(40) +10(5); покусковую - на класс -150 +50(40) наиболее оптимальных для рентгенорадиометрической сепарации в покусковом и мелкопорционном режимах, что обеспечивает, в частности, выведение самого мелкого класса - 5 или - 10 мм и менее, который более усреднен, чем крупные классы и в значительной мере мешает измерению микропорций рентгенорадиометрическим способом;
- при сортировке золотосодержащих руд выделяют несколько элементов, ассоциирующих с золотом, и определение золота в куске производят по логике "И/ИЛИ", что позволяет более достоверно учесть наличие или отсутствие золота в куске при возможном отсутствии в куске одного из коррелирующих элементов;
- продукт сепарации объединяют с мелким не сортируемым классом -10(5) мм, что позволяет снизить потери полезного компонента. Предлагаемый способ сортировки минерального сырья и золотосодержащих руд реализован следующим образом. Пример 1. Технологическую пробу бедной кварцевосульфидной золотосодержащей руды в объеме 10 т месторождения "Эльдорадо" с содержанием золота 2,5 г/т и классом крупности -150 мм подвергли грохочению на агрегате СМД-187А с двухярусной установкой сит с ячейками на 10 и на 50 мм. Класс -10 мм складировали для последующего опробования. Покусковая сепарация и мелкопорционная сортировка производилась на промышленном рентгенорадиометрическом сепараторе СРРЛ-4-150/40, (ТУ 3132-015-05820239-96, производство ООО "Радос", г. Красноярск). Сепаратор оснащен четырьмя ручьями для покусковой и мелкопорционной сортировки. Вначале осуществляли мелкопорционную сортировку. Отгрохоченный материал -50 +10 мм по мере грохочения непосредственно поступал на сортировку без дополнительного усреднения, а класс -150 +50 мм складировался для последующей покусковой сепарации, (на качество покусковой сепарации складирование не влияет). Разделение кварцевосульфидной золотосодержащей руды вели по алгоритму
где NAs - регистрируемое число квантов характеристического рентгеновского излучения мышьяка (арсенопирит - основной ассоциирующий с золотом минерал, генетический спутник). Эксперименты подтвердили, что
можно в этом случае заменить на значение K = 1. Для выделения из потока кварцевой разновидности руды, также содержащей часть золота, применяли алгоритм
т. е. распознование кварца от (на фоне) вмещающих пород производили по отсутствию или малому количеству железа в куске (во вмещающих породах содержание железа в 3-10 и более раз превышает содержание в кварце). При использовании этих двух параметров в качестве общего алгоритма одновременного выделения золотосодержащих кусков (кварцевых или сульфидных) и безрудных кусков использовали логику и/или. 1. As > П1 - (сульфидный кусок) - отбор, где П1 - установленое пороговое значение при As < П1As < П1 следует проверка по Fe. 2. Fe < П2 (кварцевый кусок) - отбор, где П2 - установленное пороговое значение для кварца при 1 < П1 и 2 > П2 - безрудный кусок. Все эти комбинации объединяются по общей логике
- логика выделения золотосодержащих рудных кусков:
1 > П1 <или> 2 < П2
- логика выделения породы - безрудных кусков, бедных по содержанию золота и отвальных кусков руды
1 П1 <и> 2 > П2
Мелкопорционную сортировку производили, разделяя исходный поток класса -50 + 10 на сепараторе на четыре ручья, которые замерялись в свободном падении после виброраскладчика. За счет щелевой коллимации первичного рентгеновского излучения каждый ручей сортируемого класса сканируется, а измерительная система разбивает эти ручьи на еще более мелкие порции, соответствующие циклам измерения по 0,05 - 0,1 с с массой каждой порции 0,5 - 1 кг (что приблизительно равно весу среднего куска). Таким образом, последовательное уменьшение сортируемых порций до ручья, а затем до микропорций позволило без снижения производительности повысить контрастность микропорций и улучшить качество сортировки. В результате мелкопорционной сортировки выделен обогащенный продукт с выходом 12,7% от руды (~28% от класса) и коэффициентом обогащения 1,55. Покусковая сепарация класса -150 +50 мм выполнялась на этом же сепараторе с выделением обогащенной в 2,8 раз руды и хвостов сепарации с содержанием всего 0,4 г/т золота (на уровне отвального). Полученная товарная руда представляет продукт объединения обогащенной части руды (покусковой сепарации и мелкопорционной сортировки) с несортируемым классом -10 мм. Общее качество товарной руды улучшено в 1,8 раз по сравнению с исходной. Общие хвосты содержат золота меньше 1 г/т (0,88 г/т), что значительно ниже бортового содержания, рентабельного для переработки. Технологические показатели испытаний рентгенорадиометрического обогащения руды класса -150 мм представлены в табл. 1. Пример 2. Технологическую пробу свинцово-цинковой бедной руды Горевского месторождения Красноярского края (из забалансового отвала 0,8% Pb и 1,3% Zn) подвергали грохочению с классификацией -150 +50, -50 +10 мм. Для покусковой и мелкопорционной сортировки использовался 4-х ручьевой рентгенорадиометрический сепаратор СРРЛ-4-150/40. Обрабатываемая руда характеризуется большим содержанием сидерита (20-40%), мешающего определению Pb и Zn в кусках и порциях руды. Применен алгоритм сепарации (аналитический параметр), позволяющий анализировать одновременно малые содержания Pb и Zn на фоне большого содержания Fe в режиме сепарации и сортировки:
где NZn и NPb - число квантов рентгеновского излучения, соответствующее Zn и Pb;
NS - число квантов рассеянного излучения;
NFe - число квантов рассеянного излучения;
K - спектральный коэффициент
Тем самым, при больших содержаниях железа знаменатель для увеличивается и компенсирует влияние железа на "мнимое" увеличение содержание цинка и свинца. При малых содержаниях Fe его вклад зависит от NZn + NPb и применяемое значение K также полностью компенсирует влияние Fe на определение Zn и Pb. Мелкопорционную сортировку класса -50 +10 мм осуществляли в следующей последовательности:
- подача руды монослоем на 4-х ручьевой виброраскладчик с разделением на четыре ручьевых потока;
- выделение микропорций руды и их измерение при сходе с раскладчика в свободном падении; выделение микропорций за счет цикличного измерения с циклом 0,1 с;
- отбивка микропорций шибером электромагнитного исполнительного механизма, аналитический параметр которых превышает установленный порог. Выделили два продукта - обогащенный и хвосты. Покусковая сепарация осуществлялась аналогично по аналитическому параметру на класс -150 +50 мм с разделением на два продукта - обогащенный и хвосты. Результаты представлены в табл. 2. По реализованному способу выделили из бедной руды (12 + 14,1) = 26,1% богатой руды (обогащенные продукты) с извлечением в нее 52,3% Pb и 46,4% Zn. Обогащенные продукты объединяли с классом -10 мм. Способ позволяет повысить качество сепарации в особенности сложных по составу руд, ввести в процесс сортировки мелкий класс руды -50(40), повысить производительность процесса, уменьшить потери полезного компонента.
Класс B07C5/346 по радиоактивности
Класс B07B15/00 Комбинации устройств для разделения сухими способами сыпучих материалов или штучных изделий, хранимых навалом и пригодных для сортировки как сыпучие материалы
Класс B03B13/06 с использованием поглощения или отражения радиоактивного излучения