устройство для измерения скорости потока вещества

Классы МПК:G01P5/00 Измерение скорости текучих сред, например воздушных потоков; измерение скорости твердых тел, например судов, самолетов и тп, относительно текучей среды
G01F1/66 измерением частоты, фазового сдвига, времени распространения электромагнитных или других волн, например ультразвуковые расходомеры
Автор(ы):,
Патентообладатель(и):Наумчук Анатолий Петрович,
Михеев Юрий Петрович
Приоритеты:
подача заявки:
1999-02-17
публикация патента:

Устройство предназначено для использования в измерительной технике для измерения скорости и расхода вещества. Устройство содержит два идентичных синхрокольца. Каждое синхрокольцо состоит из измерительного участка, пьезоэлектрических преобразователей, формирователя импульсов зондирования, усилителя-формирователя, фазового детектора, управляемого генератора импульсов, счетного устройства, измерительного блока и схемы И. В каждое синхрокольцо введены элемент задержки сигнала и триггер, при этом один из выходов счетного устройства соединен со входами триггера и элемента задержки, выход которого соединен со входом фазового детектора, выход триггера соединен со входом схемы И, а выход схемы И подключен к цепям сброса в "0" триггера и счетного устройства. Обеспечивается повышение точности измерения. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Устройство для измерения скорости потока вещества, содержащее два идентичных синхрокольца, каждое из которых состоит из измерительного участка, пьезоэлектрических преобразователей, один из которых соединен с формирователем импульсов зондирования, а другой - с усилителем-формирователем, фазового детектора, первый вход которого соединен с выходом усилителя-формирователя, а выход - со входом управляемого генератора импульсов, выход которого соединен со входом счетного устройства и измерительного блока, первый выход счетного устройства соединен с первым входом схемы И, выход которой соединен со входом формирователя импульсов зондирования, отличающееся тем, что в каждое синхрокольцо введены элемент задержки сигнала и триггер, при этом второй выход счетного устройства соединен со входами триггера и элемента задержки сигнала, выход которого соединен со вторым входом фазового детектора, выход триггера соединен со вторым входом схемы И, а выход схемы И подключен к цепям сброса в "0" триггера и счетного устройства.

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано для измерения скорости потока и расхода веществ в различных отраслях промышленности.

Наиболее близким прототипом является ультразвуковой частотно-импульсный расходомер по ав. св. N 879306, содержащий, по крайней мере, одно синхрокольцо, состоящее из измерительного участка, пьезоэлектрических преобразователей, один из которых соединен с формирователем импульсов зондирования, а второй - с усилителем-формирователем, выход которого подан на первый вход фазового детектора, соединенного по выходу с управляемым автогенератором, связанным по выходу с делителем частоты и измерительным блоком, причем сигнал на вход формирователя импульсов зондирования поступает от схемы И.

Причиной, препятствующей получению указанного ниже технического результата при использовании известного устройства, является то, что в нем при измерении скорости потока используются периоды синхроколец, часть времени которых составляет время задержки информационного сигнала на неизмерительных участках синхроколец, что вносит дополнительную погрешность в измерение. Другим недостатком известного устройства, работающего в режиме непрерывной автоциркуляции импульсов в синхрокольцах, является наложение реверберационных помеховых сигналов на приемный импульс, что приводит к погрешности измерения скорости.

Основной задачей, на решение которой направлено заявленное устройство, является повышение точности измерения за счет уменьшения влияния реверберационных помех и задержки сигнала в синхрокольцах на его неизмерительных участках.

Указанный технический результат достигается тем, что в каждое синхрокольцо введены элемент задержки сигнала и триггер, при этом второй выход счетного устройства соединен со входами триггера и элемента задержки сигнала, выход которого соединен со вторым входом фазового детектора, выход триггера соединен со вторым входом схемы И, а выход схемы И подключен к цепям сброса в "0" триггера и счетного устройства.

На фиг. 1 представлена блок-схема устройства, а на фиг. 2 - диаграмма напряжений в отдельных точках схемы.

Блок-схема содержит: управляемый генератор импульсов 1, счетное устройство 2, триггер 3, схему И 4, формирователь импульсов зондирования 5, пьезоэлектрические преобразователи 6 и 8, измерительный участок 7 трубопровода, усилитель-формирователь 9, фазовый детектор 10, элемент задержки сигнала 11 и измерительный блок 12.

Схема работает следующим образом.

Импульсы с управляемого генератора импульсов 1 с частотой f1 поступают на счетное устройство 2 с коэффициентом деления N. Через время N/f1 с выхода счетного устройства 2 сигнал (см. фиг. 2b) поступит на элемент задержки 11, с временем задержки t0 (фиг. 2с), а с него на второй вход фазового детектора 10. Кроме того, с выхода счетного устройства 2 сигнал поступит на триггер 3, который выдает сигнал разрешения на схему И 4 (фиг. 2е). Счетное устройство обнулится и начнет вновь счет с "0". Как только на вход счетного устройства поступит n импульсов от счетного элемента промежуточного разряда счетного устройства, поступит сигнал на второй вход схемы И 4, сработает схема И (фиг. 2а), а от него сработает формирователь импульсов зондирования 5, который возбудит передающий пьезоэлектрический преобразователь 6, и в измеряемую среду в измерительном участке 7 будут излучены акустические колебания, которые начнут движение в сторону приемного пьезоэлектрического преобразователя 8. Кроме того сигналом с выхода И 4 будут установлены в "0" счетное устройство и триггер. Счетное устройство вновь начнет с "0" отсчет импульсов, поступающих с управляемого генератора импульсов, и цикл повторится.

Общее время от момента зондирования акустического сигнала в измерительную среду до момента поступления сигнала на второй вход фазового детектора составит

устройство для измерения скорости потока вещества, патент № 2165085

Акустический сигнал, поступающий на приемный пьезоэлектрический преобразователь 8, преобразуется в электрический импульс (фиг. 2f), который поступит на усилитель- формирователь 9, а с него - на первый вход фазового детектора (фиг. 2d). Время от момента зондирования до поступления сигнала на первый вход фазового детектора выразится так:

Tизм+устройство для измерения скорости потока вещества, патент № 2165085зад,

где Тизм - время прохождения сигнала в измерительной части акустического тракта синхрокольца,

устройство для измерения скорости потока вещества, патент № 2165085зад - время прохождения сигнала по синхрокольцу вне измерительной части акустического тракта (время прохождения сигнала по соединительным кабелям, по протекторам пьезоэлементов, задержка сигнала в усилителе-формирователе и т.д.), т.е. время задержки информационного сигнала.

Так как управляемый генератор импульсов 1 управляется от фазового детектора, то частота f1 изменяется таким образом, что сигналы на первый и второй входы фазового детектора в установившемся режиме поступают одновременно, т. е.

устройство для измерения скорости потока вещества, патент № 2165085

устройство для измерения скорости потока вещества, патент № 2165085

устройство для измерения скорости потока вещества, патент № 2165085

где F1 - частота автоциркуляции синхрокольца при условии устройство для измерения скорости потока вещества, патент № 2165085зад = 0.

Частота f1 = NF1 поступает на измерительный блок 12. С аналогичной схемы, запускающей акустические импульсы в измерительную среду в противоположном направлении, частота f2 = NF2 будет поступать на другой вход измерительного блока 12. В блоке 12 определяется разность частот (f1 - f2) = N(F1 - F2), являющаяся мерой скорости потока измеряемой среды.

Как видно из блок-схемы, зондирование импульсов происходит не в момент прихода приемного импульса (f1 на фиг. 2f), как это делается в прототипе, а спустя время, равное

устройство для измерения скорости потока вещества, патент № 2165085

При этом n выбирается таким образом, чтобы за время устройство для измерения скорости потока вещества, патент № 2165085 реверберационные помехи успели затухнуть до необходимой величины (фиг. 2f).

Таким образом, предлагаемое техническое решение повышает точность измерения скорости потока измеряемой среды за счет уменьшения влияния реверберационных помех и вычитания времени задержки сигнала в синхрокольцах на его неизмерительных участках из периода синхрокольца.

Класс G01P5/00 Измерение скорости текучих сред, например воздушных потоков; измерение скорости твердых тел, например судов, самолетов и тп, относительно текучей среды

термоанемометр и способ нагрева его терморезисторной структуры -  патент 2528572 (20.09.2014)
анемометрический зонд с одной или несколькими проволочками и способ его осуществления -  патент 2524448 (27.07.2014)
способ бесконтактной оптико-лазерной диагностики нестационарного гидропотока и устройство для его реализации -  патент 2523737 (20.07.2014)
устройство для измерения эмиссии парниковых газов из почвы и растений -  патент 2518979 (10.06.2014)
система воздушных сигналов вертолета -  патент 2518871 (10.06.2014)
устройство регулирования анемометра с проволочкой -  патент 2510027 (20.03.2014)
способ измерения скорости потока и устройство для его осуществления -  патент 2506597 (10.02.2014)
вихревой датчик аэродинамического угла и истинной воздушной скорости -  патент 2506596 (10.02.2014)
автономное устройство для регистрации скорости и направления течения жидкости и газа -  патент 2503962 (10.01.2014)
электромагнитный лаг-дрейфомер -  патент 2503014 (27.12.2013)

Класс G01F1/66 измерением частоты, фазового сдвига, времени распространения электромагнитных или других волн, например ультразвуковые расходомеры

ультразвуковой способ определения скорости потока газовой среды и устройство для его осуществления -  патент 2529635 (27.09.2014)
способ измерения расхода жидкости -  патент 2525574 (20.08.2014)
ультразвуковой расходомер с дренажной системой для отведения жидкости -  патент 2522125 (10.07.2014)
способ измерения расхода двухфазного потока сыпучего диэлектрического материала, перемещаемого воздухом по металлическому трубопроводу -  патент 2518514 (10.06.2014)
ультразвуковой расходомер с блоком заглушки посадочного гнезда -  патент 2518033 (10.06.2014)
ультразвуковой расходорер, блок преобразователя с изолированным трансформаторным модулем -  патент 2518031 (10.06.2014)
ультразвуковой расходомер с преобразовательным блоком, содержащим приемник и коленчатый соединитель -  патент 2518030 (10.06.2014)
датчик ультразвукового расходомера -  патент 2517996 (10.06.2014)
система и способ обнаружения нароста отложений в ультразвуковом расходомере и машиночитаемый носитель информации -  патент 2514071 (27.04.2014)
преобразователь и способ его изготовления, ультразвуковой расходомер и способ измерения характеристик текучей среды -  патент 2509983 (20.03.2014)
Наверх