сверхвысокочастотное защитное устройство
Классы МПК: | H02H7/12 статических преобразователей или выпрямителей |
Автор(ы): | Будзинский Ю.А., Кантюк С.П., Петровский В.Б. |
Патентообладатель(и): | Государственное научно-производственное предприятие "Исток" |
Приоритеты: |
подача заявки:
1985-02-21 публикация патента:
20.05.2001 |
Изобретение относится к электронике СВЧ и может быть использовано для защиты выходных каскадов СВЧ приемников от воздействия СВЧ импульсной мощности порядка 100 кВт при средней мощности до 1 кВт. Техническим результатом является уменьшение времени восстановления, снижение просачивающейся на выход СВЧ мощности, повышение надежности защитного устройства, а также управление мощностью и фазой сигнала. Предложенное устройство состоит из электронной пушки, входного и выходного резонаторов, разделенных диафрагмой, и коллектора. Для передачи сигнала используются быстрые циклотронные волны электронного потока. Устройство имеет время восстановления 10-20 нс, просачивающуюся импульсную мощность 1-5 мВт, долговечность - тысячи часов, а также может быть использовано в качестве управляемых аттенюатора и фазовращателя. Устройство обеспечивает надежную защиту приемника в случае радиопротиводействия. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
Сверхвысокочастотное защитное устройство (СВЧ), содержащее входной и выходной резонаторы, отличающееся тем, что, с целью повышения надежности, путем уменьшения времени восстановления и снижения просачивающейся на выход СВЧ мощности, оно дополнительно снабжено электронной пушкой, коллектором и диафрагмой, разделяющей резонаторы, с отверстием для прохождения электронного потока, при этом размеры отверстия в 1 - 5 раз меньше толщины диафрагмы и более чем в 3 раза меньше рабочей длины волны устройства, а резонаторы выполнены в виде элементов связи, с быстрой циклотронной волной электронного потока, образованных бифилярными ленточными спиралями с шагом витков, равным шагу быстрой циклотронной волны сигнала, а все устройство помещено в однородное магнитное поле, направление которого совпадает с осью электронного потока.Описание изобретения к патенту
Изобретение относится к электронике СВЧ и может быть использовано для защиты входных каскадов СВЧ приемника от воздействия СВЧ колебаний большой мощности. Перед авторами стояла задача создания устройства, способного надежно защищать приемник от СВЧ импульсов с амплитудой до 50 кВт, при средней мощности до 500 Вт, при произвольной длительности и частоте повторения импульсов, с временем восстановления менее 20 нс, с просачивающейся мощностью на выходе не более 5 мВт, способного выполнять функции управляемого аттенюатора и фазовращателя. Известны защитные устройства на полупроводниковых ограничительных диодах [1] , имеющие время восстановления десятки наносекунд, однако допустимая входная СВЧ мощность для этих устройств не превышает несколько киловатт, даже в режиме коротких импульсов. Известны резонансные газовые разрядники, состоящие из нескольких последовательно соединенных низкодобротных резонаторов, заполненных газом [2], способные работать при больших уровнях СВЧ мощности (прототип). Однако время восстановления этих защитных устройств превышает 1 мкс, и, кроме того, просачивающаяся на выход этих устройств мощность довольно велика. Например, газовый разрядник BL 397A [3], работающий в диапазоне частот 9,25 - 9,5 ГГц, выдерживает импульсную мощность до 250 кВт при скважности 1000, имеет время восстановления 1,5 мкс и просачивающуюся мощность 40 мВт. Общим недостатком полупроводниковых устройств и газовых разрядников является их принципиальная ненадежность, т.к. а) активный элемент их (полупроводник, газ) подвержен воздействию СВЧ мощности, что разрушает его;б) в случае несрабатывания защитного устройства либо выхода его из строя СВЧ мощность может проникать в последующий каскад приемника и разрушать его;
в) защитные свойства устройства, как правило, ухудшаются в случае воздействия СВЧ перегрузок вне рабочей полосы частот защитного устройства. Все перечисленные устройства не могут управлять мощностью и фазой сигнала. Целью настоящего изобретения является уменьшение времени восстановления, снижение просачивающейся на выход СВЧ мощности, повышение надежности защитного устройства, а также управление мощностью и фазой сигнала. Поставленная цель достигается тем, что известное защитное устройство, содержащее входной и выходной резонаторы, дополнительно содержит электронную пушку, коллектор и диафрагму, разделяющую резонаторы, с отверстием для прохождения электронного потока, причем размеры отверстия меньше толщины диафрагмы и много меньше рабочей длины волны устройства, резонаторы выполнены в виде элементов связи с быстрой циклотронной волной, а все устройство помещено в однородное магнитное поле, направление которого совпадает с осью электронного потока. Элементы связи могут быть выполнены в виде двух плоских ламелей. С целью лучшей развязки по высокой частоте входной элемент связи может быть развернут относительно выходного, вокруг оси электронного потока, на угол 90o

L = 8,68

где

l - толщина диафрагмы,





получим из (1.1), (1.2)

Для низшего типа волн для, круглого отверстия диаметром a, величина


получим

Из выражений (1.3), (1.5), (1.6) очевидно, что отверстие в диафрагме будет эффективно ослаблять СВЧ мощность (не менее 32 дБ) при условии, что поперечные размеры отверстия меньше толщины диафрагмы и много меньше рабочей длины волны устройства. Одновременно, при оседании электронного потока, КСВн входа (и выхода) устройства возрастает до 30-40 ед., что обеспечивает отражение СВЧ мощности и дополнительное ослабление между входом и выходом устройства на 20-30 дБ. Малое время восстановления устройства после воздействия СВЧ мощности определяется временем затухания колебаний в низкодобротном входном резонаторе. Надежность устройства повышается за счет использования электронного потока и вынесения активного элемента - катода из области СВЧ полей. Управление мощностью сигнала осуществляется регулировкой величины электронного тока. Управление фазой сигнала осуществляется изменением величины магнитного поля. Изобретение поясняется чертежами: фиг. 1 - СВЧ защитное устройство; фиг. 2 - зависимость СВЧ мощности на выходе защитного устройства от мощности на входе:
а) в статическом режиме;
б) в динамическом режиме. На фиг. 1 обозначено: 1 - электронная пушка, 2 - входной резонатор, 3 - разделительная диафрагма, 4 - выходной резонатор, 5 - коллектор. Во - однородное магнитное поле. Наиболее эффективные элементы связи с быстрой циклотронной волной электронного потока представляют собой объемные резонаторы с емкостным зазором, образованным плоскими ламелями (фиг. 1). Для уменьшения "холодной" связи между резонаторами желательно их развернуть на 90o относительно друг друга. Это дает дополнительную развязку в 20 - 30 дБ, т.к. СВЧ поля оказываются ортогональными друг к другу. Предложенное устройство работает следующим образов. В режиме малых сигналов СВЧ сигнал, приходящий во входной резонатор, возбуждает в электронном потоке быструю циклотронную волну. Одновременно удаляется во входную нагрузку шумовая энергия электронного потока, обусловленная тепловыми скоростями электронов. Затем электронный поток через отверстие в диафрагме поступает в выходной резонатор, где происходит обратное преобразование - энергии быстрой циклотронной волны в СВЧ сигнал. Потери сигнала, вносимые устройством в этом режиме, могут быть не более 0,5 дБ в полосе частот 3-5%. При входной мощности, превышающей Pосед.


где







где



в результате, плоская часть СВЧ импульса проникает на выход защитного устройства ослабленной на 80-85 дБ; т.е. при PИМП = 50 кВт на выход пройдет не более 1 мВт. Сказанное иллюстрируется фиг. 2, где приведена зависимость СВЧ мощности на выходе защитного устройства от мощности на входе, в статическом режиме (а) и в динамическом режиме (б), и обозначено: PВХ - СВЧ мощность на входе защитного устройства, PВЫХ - мощность на выходе защитного устройства, Pосед. - мощность, выше которой электронный поток оседает на ламелях входного резонатора,


где QН - нагруженная добротность резонатора,
Tо - период СВЧ колебаний,
Pш - мощность тепловых колебаний, обусловленная потерями в резонаторе. При QН = 20, Tо = 10-10 с,




где E = 100 кВ/мм - напряженность электрического поля при пробое в вакууме, d - зазор между ламелями резонатора,



где

lр - расстояние между резонаторами,

Vе - скорость электронного протока. Из (6), (7)

Как видно из (8), изменяя


1. Значительно, до 10 нс, уменьшить время восстановления устройства, так как переход предлагаемого защитного устройства от режима приема к режиму защиты и обратно обусловлен только временем затухания СВЧ колебаний в низкодобротном входном резонаторе. 2. Снизить просачивающуюся на выход устройства мощность до 1 - 5 мВт, т. к. при входной мощности более 5 мВт электронный поток полностью прекращается, связь между резонаторами ослабляется, одновременно увеличивается КСВн резонаторов, в результате на выход защитного устройства СВЧ мощность попадает ослабленной на 80-85 дБ. 3. За счет малого времени восстановления устройства и снижения просачивающейся мощности уменьшить время восстановления радиолокационной станции и других приемных устройств до 10-20 нс. 4. Надежно защитить приемник от СВЧ мощности, меняющейся по произвольному закону в широком диапазоне частот, так как
а) надежность и долговечность устройства будет выше, чем полупроводниковых и газоразрядных, т.к. его активный элемент - катод - не подвергается воздействию СВЧ мощности;
б) даже при выходе устройства из строя, по любой причине (оплавление ламелей, ухудшение вакуума, потеря эмиссии и т.д.), СВЧ мощность все равно не проникает через устройство и, следовательно, последующие каскады сохранятся годными;
в) вне рабочей полосы защитные свойства устройства даже улучшаются, т.к. увеличивается КСВн его входа. 5. Упростить приемный тракт в целом, так как предложенное устройство может выполнять функции управляемого эттенюатора и фазовращателя. Литература:
1. White J.F. Semiconductor control. Dedham, Artech House, 1977. 2. Ашкенази Д.Я., Беляев В.П. и др. Резонансные разрядники антенных переключателей. / Под ред. И.В. Лебедева. - М.: Сов. радио, 1976, стр. 27 - прототип. 3. Microwave Data book. Vol 27, book 23, стр. 94 (1982). 4. Лопухин В.М., Рошаль А.С. Электроннолучевые параметрические усилители. - М.: Сов. радио, 1968. 5. Стандарты ИРИ по электровакуумным приборам. Методы испытаний./ Пер. с англ. - 1962, стр. 104. 6. Тишер Ф. Техника измерений на сверхвысоких частотах./ Пер. с нем. - М.: гос. изд. физ.-мат. литературы, 1963. 7. Лебедев И.В. Техника и приборы СВЧ. т. 1 - М.: Высшая школа, 1970.
Класс H02H7/12 статических преобразователей или выпрямителей