способ определения модуля упругости металлических материалов при криогенных и повышенных температурах и устройство для его осуществления
Классы МПК: | G01N3/20 путем приложения постоянных изгибающих моментов G01N3/18 при высокой или низкой температуре |
Автор(ы): | Ильин Ю.С. |
Патентообладатель(и): | Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского |
Приоритеты: |
подача заявки:
2000-04-26 публикация патента:
20.06.2001 |
Изобретение относится к испытательной технике, в частности, к способам испытания конструкционных материалов на прочность в широком диапазоне температур. Изобретение заключается в том, что в предлагаемом способе исследуемый образец нагружают на изгиб поочередно двумя грузами разной величины при нормальной и заданной температурах, измеряют максимальные прогибы образца в направлении действия нагрузки и расчетным путем определяют модуль упругости материала на растяжение или сжатие при заданной температуре. Устройство для осуществления данного способа содержит нагружающий механизм, измеритель перемещений, систему регулирования температуры и устройства для измерения и регистрации температуры образца. Данное изобретение позволяет исследовать металлические материалы на прочность в широком диапазоне температур с высокой точностью задания величины нагрузки и измерения больших изгибных деформаций, а также сократить затраты на испытательное оборудование и снизить трудоемкость испытаний. 2 c.п. ф-лы, 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
1. Способ определения модуля упругости металлических материалов при криогенных и повышенных температурах, заключающийся в нагружении образца растягивающей или сжимающей нагрузкой при нормальной температуре в упругой области диаграммы "напряжение - деформация", измеряют нагрузку и изменение длины образца на принятой базе измерения и рассчитывают модуль упругости материала при нормальной температуре, отличающийся тем, что после указанной последовательности операций нагружают образец на изгиб поочередно двумя грузами разной величины при нормальной температуре, измеряют максимальные прогибы образца в направлении действия нагрузки, разгружают образец, нагревают или охлаждают образец до заданной температуры, выдерживают его при этой температуре до установления равномерного температурного поля по всему объему материала образца в зачетной зоне, нагружают образец на изгиб поочередно теми же двумя грузами, измеряют максимальные прогибы образца в направлении действия нагрузки и рассчитывают модуль упругости материала на растяжение или сжатие при заданной температуре по формулеEt = E0

где E0 - модуль упругости материала на растяжение (сжатие) при нормальной температуре;


где fp10 и fp1t - изгибы образца при нагружении на изгиб грузом P1 при нормальной и заданной температурах соответственно;
fp20 и fp2t - изгибы образца при нагружении на изгиб грузом P2 при нормальной и заданной температурах соответственно. 2. Устройство для определения модуля упругости металлических материалов при криогенных и повышенных температурах, содержащее нагружающий механизм, измеритель перемещений, систему регулирования температуры и устройства для измерения и регистрации температуры образца, отличающееся тем, что нагружающий механизм снабжен двумя разными по величине грузами и блоком их опускания и поднятия при нагружении, система регулирования температуры снабжена кварцевыми инфракрасными нагревателями и криогенной панелью охлаждения, измеритель перемещений выполнен в виде измерителя прогиба продольной оси образца при нагружении, базовые опоры и измерительный шток которого выполнены из керамических стержней и шарнирно соединены с испытываемым образцом.
Описание изобретения к патенту
Изобретение относится к испытательной техникe, в частности к способам испытания конструкционных материалов на прочность в широком диапазоне температур. Область применения - авиастроение, судостроение, машиностроение, атомная энергетика, металлургия и др. Модуль упругости при растяжении (сжатии) является характеристикой сопротивления материала упругой деформации, численно равной отношению напряжения к вызванной им упругой деформации, не выходящей за предел пропорциональности. Знание величины модуля упругости необходимо при расчетах на прочность, жесткость и устойчивость конструкций, при обработке результатов измерений с целью определения напряжений в конструкции по величине относительной деформации, а также как мера силы межатомной связи (см. Политехнический словарь. - М. : Советская энциклопедия, 1977 г., с. 295; Бэкофен В. Процессы деформирования.- М.: Металлургия, 1977, с. 21 и др.). Методы испытаний на растяжение, сжатие и изгиб металлических и неметаллических материалов регламентированы рядом отечественных и зарубежных ГОСТов, нормалей и справочных пособий, например, ГОСТ 1497-84 "Металлы. Методы испытаний на растяжение", "Методы статических испытаний армированных пластиков/Справочное пособие, Рига: Зинатне, 1972 г.; Тернопольский Ю.М., Кинцис Т. Я. Методы статических испытаний армированных пластиков.- М.: Химия, 1981; ГОСТ 9651-84; ГОСТ 25.503-80; ГОСТ 11150-84 и др. Модуль упругости конструкционных металлических материалов сильно зависит от природы самого материала (сплавы алюминия - 7,2









где P - силы, прикладываемые на концах консолей балки;
a - длина консолей балки;
l - длина балки в среднем пролете;
E0 - модуль упругости материала при нормальной температуре;
J - момент инерции. А при заданной температуре t и нагружении теми же силами максимальный прогиб балки в среднем пролете будет равен

Решая уравнение (а) и (б) относительно силы P, имеем

и

Из уравнений (в) и (г) имеем

или
fpo


Из уравнения (д) модуль упругости Et при заданной температуре t равен

или
Et = Eo


где


где fp1o и fp1t - прогибы балки при нагружении на изгиб грузом P1 при нормальной и повышенной температурах, соответственно;
fp2o и fp2t - прогибы балки при нагружении на изгиб грузом P2 при нормальной и повышенной температурах, соответственно. Определив при растяжении или сжатии образца из конструкционного материала модуль упругости Eo при нормальной температуре по стандартной методике и функцию влияния температуры на модуль упругости материала при изгибе, рассчитываем значение модуля упругости материала при заданной температуре по формуле (I). Задачей предложенного изобретения является увеличение точности и температурного диапазона определения модуля упругости материалов, сокращение затрат на испытательное оборудование и трудоемкости испытаний. Технический результат достигается широким диапазоном воспроизведения криогенных и повышенных температур, высокой точностью задания величины нагрузки и измерения больших изгибных деформаций (прогибов продольной оси образцов). Технический результат достигается тем, что в предлагаемом способе исследуемый образец нагружают на изгиб поочередно двумя грузами разной величины при нормальной и заданной температурах, измеряют максимальные прогибы оси образца в направлении действия нагрузки, рассчитывают модуль упругости материала на растяжение или сжатие при заданной температуре по формуле
Et = Eo


где Eo - модуль упругости материала на растяжение (сжатие) при нормальной температуре, определенный по известной технологии;


fp1o и fp1t - прогибы образца при нагружении на изгиб грузом P1 при нормальной и заданной температурах, соответственно;
fp2o и fp2t - прогиб образца при нагружении на изгиб грузом P2 при нормальной и заданной температурах, соответственно. Обоснование формулы (I) приведено выше. На фиг. 1 приведена структурная схема испытательной установки. На фиг. 2 приведена функция влияния температуры на модуль упругости и изменение модуля упругости некоторых титановых сплавов в рабочем диапазоне температур. Способ осуществляется следующим образом. Устанавливают исследуемый образец 1 (фиг. 1), выполненный в виде двухопорной с двумя консолями балки, в захваты 2 нагружающего механизма испытательной установки 4. Тягами 3 нагружают образец при нормальной температуре поочередно грузами различной величины P1 (5) и P2 (6) при помощи гидравлического блока опускания или подъема 7 и пульта управления 8. При этом измеряют максимальные прогибы продольной оси образца в центре среднего пролета (точка А) fp1o и fp2o при помощи измерителя перемещений 9. Затем образец разгружают, нагревают (охлаждают) до заданной температуры и выдерживают при этой температуре в течение времени

Et = Eo


где Eo - модуль упругости материала на растяжение (сжатие) при нормальной температуре, определенный по стандартной технологии;


fp1o и fp1t - прогибы образца при нагружении на изгиб грузом P1 при нормальной и заданной температурах, соответственно;
fp2o и fp2t - прогибы образца при нагружении на изгиб грузом P2 при нормальной и заданной температурах, соответственно. В измерителе перемещений в качестве электрического преобразователя могут применяться тензорезисторные датчики линейных перемещений типа ДП (см. Баранов А.Н., Белозеров Д.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов.- М.: Машиностроение, 1974 г., с. 262), прибор, показывающий с индуктивным преобразователем модель 276 (паспорт прибора, Московский з-д "Калибр"), который обеспечивает измерение прогибов с погрешностью не более


1) исключения погрешностей измерения нагрузки (нагружение производится двумя постоянными грузами, причем сама величина грузов в расчетах не используется);
2) расширения диапазона измеряемых перемещений (прогибы образца на изгиб больше, чем изменение базы измерения при растяжении или сжатии на несколько порядков);
3) исключения погрешностей измерения перемещений, возникающих за счет изменения базы измерения при нагревании, температурных деформаций выносных тяг измерителей деформаций, люфтов в узлах подвески измерительных устройств и др. Погрешность определения модуля упругости материалов на растяжение (сжатие) предлагаемым способом может быть оценена следующим образом. Если для определения модуля упругости при растяжении (сжатии) при температуре 20oC воспользоваться способом по а.с. N 954850, среднеквадратическая погрешность которого составляет


1) использования в испытательной установке стандартных широко применяемых приборов и устройств;
2) отсутствия необходимости использования в качестве нагружающего оборудования универсальной испытательной машины;
3) oтсутствия в установке больших теплоемких захватов образца, что позволяет сократить число зон регулирования температуры с 3 до 1. На фиг. 2 приведены в качестве примера результаты определения функции влияния температуры на модуль упругости конструкционных титановых сплавов марки ВТ3, ВТ5 и ВТ10 в диапазоне температур 20-500oC. Там же пунктирной кривой показана зависимость E от температуры при растяжении, определенная по формуле (I), для титанового сплава ВТ3, где Eo - модуль упругости сплава на растяжение при 20oC. Устройство для определения модуля упругости материалов при криогенных и повышенных температурах (фиг. 1) состоит из нагружающего механизма, измерителя перемещений, системы регулирования температуры, устройства для измерения и регистрации. Нагружающий механизм снабжен двумя разными по величине грузами (5 и 6) и гидравлическим блоком их опускания и поднятия 7, соединенным с пультом управления 8. Система регулирования температуры снабжена кварцевыми инфракрасными нагревателями 10, управляемыми регулятором электрического напряжения 11, и криогенной панелью 12 с устройством управления охлаждением образца 13. Измеритель перемещений 9, выполненный в виде измерителя прогиба продольной оси образца, базовыми опорами 14 и измерительным штоком 16 шарнирно крепится к образцу. Базовые опоры и измерительный шток выполнены из керамических стержней. Электрический преобразователь 15 измерителя перемещений своим выходом соединен с входом измерительной аппаратуры 17. Для измерения поля температур образца на его поверхности установлены термопары 18, соединенные с входом регистрирующей аппаратуры 19. Осуществление способа и работа устройства для его осуществления описаны выше. Экспериментальная проверка и расчеты показали, что предлагаемые способ и устройство для его осуществления обеспечивают расширение рабочего диапазона температур в 1,5-2 раза, увеличение точности исследования в 2-3 раза, уменьшение затрат на приобретение материалов и оборудование, снижение трудоемкости испытаний в 1,5-2 раза.
Класс G01N3/20 путем приложения постоянных изгибающих моментов
Класс G01N3/18 при высокой или низкой температуре