баллиститное ракетное твердое топливо
Классы МПК: | C06D5/06 реакцией двух или нескольких твердых веществ C06B25/26 с органическим компонентом, не являющимся взрывчатым или термическим |
Автор(ы): | Жегров Е.Ф., Михайлова М.И., Гаврилова Л.А., Иваньков Л.Д., Агафонов Д.П., Телепченков В.Е., Вотяков А.Г. |
Патентообладатель(и): | Федеральный центр двойных технологий "Союз" |
Приоритеты: |
подача заявки:
1999-04-28 публикация патента:
27.06.2001 |
Изобретение относится к области разработки баллиститных ракетных твердых топлив с улучшенными баллистическими характеристиками. Изобретение направлено на создание БРТТ с регулируемой скоростью горения в широких пределах, уменьшенной зависимостью U (Р, Т) и стабильной работой зарядов в РД. Поставленная задача решается созданием топлива, включающего нитроцеллюлозу, пластификатор, стабилизатор химической стойкости, технологические добавки и модификатор баллистических свойств, состоящий из стабилизатора горения, регулятора скорости горения - углерода (сажи) и катализатора горения на основе комплексных соединений свинца и меди с салициловой или фталевой кислотами либо смеси их с никелевыми комплексными соединениями на основе салициловой, фталевой или жирной кислот. 6 з.п.ф-лы, 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
1. Баллиститное ракетное твердое топливо, содержащее нитроцеллюлозу, пластификатор, стабилизатор химической стойкости, модификатор горения и технологические добавки, отличающееся тем, что в качестве модификатора горения оно содержит стабилизатор горения, углерод и свинцово-медный катализатор на основе комплексных соединений свинца и меди с салициловой или фталевой кислотами либо смесь их с никелевым катализатором на основе салициловой, фталевой или жирной кислот, при этом в качестве стабилизатора химической стойкости оно содержит N-нитрозодифениламин, или дифениламин, и/или централит, а в качестве технологических добавок - минеральное масло, соль жирной кислоты, сульфорицинат и желатин при следующем соотношении компонентов, мас. %:Пластификатор - 33 - 44
Стабилизатор химической стойкости - 1 - 2,5
Катализатор горения - 1 - 5
Углерод - 0,02 - 2
Стабилизатор горения - 1 - 5
Технологические добавки - 0,5 - 2,5
Нитроцеллюлоза - Остальное
2. Топливо по п.1, отличающееся тем, что в качестве комплексных соединений свинца и меди содержит ди-медь (II) - свинец (II) дисалицилатдигидроксид или смесь меди (II) гидроксид салицилата (2 : 2 : 1) 1-водной и салицилата свинца (II) комплекса либо медь (II) - свинец (II) фталевокислую основную. 3. Топливо по п.1, отличающееся тем, что в качестве никелевого катализатора оно содержит ди-никель (II), салицилатдигидроксид, фталат никеля, никель лауриновокислый основной или соль комплексную никелевую основную жирных кислот C10-C16. 4. Топливо по п.1, отличающееся тем, что в качестве стабилизатора горения оно включает оксид или карбонат металла или порошок алюминиево-магниевого сплава. 5. Топливо по п. 4, отличающееся тем, что в качестве оксида металла включает диоксид титана, оксид магния или оксид алюминия, а в качестве карбоната металла - карбонат кальция или карбонат магния. 6. Топливо по п.1, отличающееся тем, что в качестве пластификатора используется нитроглицерин или смесь его с динитротолуолом либо с диэтиленгликольдинитратом. 7. Топливо по п.6, отличающееся тем, что количество динитротолуола составляет 0,5 - 4,0 мас.%.
Описание изобретения к патенту
Данное изобретение относится к области разработки баллиститных ракетных твердых топлив (БРТТ) с улучшенными баллистическими характеристиками. Баллистические характеристики твердого ракетного топлива (ТРТ), в частности, малая зависимость скорости горения от давления и температуры, стабильность горения зарядов из ТРТ, определяют эффективность ракетного вооружения. Для удовлетворения требований современной ракетной техники необходимы ТРТ с широким диапазоном изменения баллистических характеристик. Задача создания БРТТ с уменьшенной зависимостью U (Р,Т) и регулируемой скоростью горения решается в основном за счет использования модификаторов баллистических свойств (баллистических модификаторов) и оптимизации соотношения между всеми компонентами. В отечественных БРТТ и зарубежных двухосновных топливах в качестве баллистического модификатора используют соединения свинца, меди, кобальта и других металлов в виде оксидов, неорганических и органических соединений в сочетании с мелкодисперсным углеродом (сажей). Из неорганических соединений находят применение оксид, хромат, карбонат, станнат, перекись свинца (пат. США N 3450583, 3764420, 3808061, 3951704, 4089716, пат. РФ N 2090544 и др.). Среди органических соединений наибольшее распространение имеют салицилат, -резорцилат, 2-этилкапронат свинца (пат. США NN 3138499, 3753811, 4139404) или их смеси с аналогичными солями меди (пат. США NN 3994757, 3960621 и др.), бензоат меди совместно с металлическим свинцом, неорганической или органической его солью (заявки Франции N 2526418, ФРГ N OS 3316676, Великобритания N 2121399). В двухосновных топливах для уменьшения зависимости при низких давлениях используются соли жирных одно- и двухосновных кислот: пальмитат, стеарат, олеат, оксалат свинца, медная соль янтарной кислоты, сукцинат меди и др. (пат. США N 2973257, 2982638, 3033716, 3033717, 3088858, 3890175, 4521261 и др. ). В качестве возможных катализаторов горения двухосновных топлив предлагаются также органометаллические соли лантана, гафния, тантала, бария, тория (пат. США N 3860462, 3923564). Рассматриваемые в этих патентах двухосновные топлива с вышеуказанными баллистическими модификаторами имеют, как правило, скорость горения порядка 8-20 мм на плато и уменьшенную зависимость U(P) в области низких или средних давлений. В качестве нетоксичного баллистического модификатора в патенте США N 5639987, кл. 149-19.8, 1997 рассматриваются органические соли висмута (- или - резорцилаты) и смеси их с органическими солями меди (салицилатами нормальными или моноосновными) или оксидами меди и с углеродом. Двухосновные композиции с этими модификаторами образуют платообразный участок U (P) в диапазоне давлений до 30 МПа с максимальной скоростью горения до 22 мм/с на плато. R заявке Великобритании N 2246348, C 06 B 25/18, 1992 г. баллистическим модификатором является оксид цинка, используемый совместно с соединениями свинца и меди, такими как стеарат, ацетофталат, -резорцилат свинца или основной салицилат меди. Согласно описанию двухосновные композиции с данным модификатором обеспечивают платообразную зависимость U(P) до 225 бар (22,5 МПа) и повышенную скорость горения (18-29 мм/с). Заявка Великобритании N 2265895, C 06 B 25/18, 1993 г. посвящена нитроцеллюлозной твердотопливной композиции, которая в качестве баллистического модификатора содержит комплексное соединение меди (II) алифатической карбоновой кислоты C6-C12, используемое преимущественно с одним или более соединениями свинца или меди, в частности со стеаратом, ацетофталатом, -резорцилатом свинца, основным салицилатом меди. Топливо обладает свойством горения по типу плато или меза-эффекта и имеет скорость горения от 4 до 45 мм/с. Платообразный диапазон давлений составляет от 20-40 до 150-300 бар (от 2-4 до 15-30 МПа). Изделия для различного применения из данного топлива изготавливаются, в основном, по литьевой или с использованием растворителя экструзионной технологиям, которые являются трудоемкими и опасными. Новый класс баллистических модификаторов описывается в патентах США N 4202714, кл. 149-109.4. 1980 г. и N 4243444, кл. 149-98, 1981 г., которые содержат соединения хелатного типа с двумя разными металлами в одной молекуле, преимущественно с медью и свинцом и двумя однотипными или разными лигандами: 2-гидроксибензойной, 2,4-дигидроксибензойной, О-ацетамидобензойной, 4-ацетамидосалициловой и другими кислотами. Соотношение между Pb, Cu-ионами и кислотными остатками составляет 1:1:2. Заявляемая патентом США N 4243444 твердотопливная композиция двухосновного типа включает от 49 до 50.5 мас.% нитроцеллюлозы, 40,6 мас.% нитроглицерина, 3,3 мас.% ди-н-пропиладипината, от 2 до 2,5 мас.% 2-нитродифениламина, 0,1 мас.% канделлильского воска и от 3 до 6 мас.% вышеупомянутого модификатора. Композиция обладает свойством гореть с образованием плато или меза-эффекта в широком диапазоне давлений до 4000 psi (40 МПа) и выше и имеет скорость горения на плато порядка 26-35 мм/с. Данная композиция является ближайшим аналогом предлагаемого БРТТ. Однако указанное топливо, как и топлива, приведенные в других зарубежных патентах, не содержит в своем составе стабилизатора горения и, следовательно, само по себе не способно обеспечить стабильную работу зарядов из него в ракетном двигателе (РД) без дополнительных технических решений по конструкции заряда. Технической задачей изобретения является создание БРТТ с регулируемой скоростью горения в широких пределах и уменьшенной зависимостью U (Р,Т), при этом обеспечивающего стабильность работы зарядов в РД. Задача решается созданием топлива, включающего нитроцеллюлозу, пластификатор, стабилизатор химической стойкости, технологические добавки и модификатор горения, при этом модификатор горения содержит стабилизатор горения, углерод, свинцово-медный катализатор на основе комплексных соединений свинца и меди с салициловой или фталевой кислотами либо смесь их с никелевым катализатором на основе салициловой, фталевой или жирной кислот, а в качестве стабилизатора химической стойкости оно содержит N-нитрозодифениламин или дифениламин и/или централит и в качестве технологических добавок - минеральное масло, соль жирной кислоты, сульфорицинат и желатин при следующем соотношении компонентов, мас.%:Пластификатор - 33-44
Стабилизатор химической стойкости - 1-2,5
Катализатор горения - 1-5
Углерод - 0,02-2
Стабилизатор горения - 1-5
Технологические добавки - 0,5-2,5
Нитроцеллюлоза - остальное. Для выполнения поставленной задачи регулирования баллистических характеристик в широких пределах и обеспечения стабильности горения зарядов в РД в состав предлагаемого топлива вводится комбинированный многофункциональный модификатор баллистических свойств, состоящий из высокоэффективного катализатора горения, регулятора скорости горения - мелкодисперсного углерода и стабилизатора горения. Катализатором горения являются комплексные соединения:
ди-медь(II)-свинец(II)дисалицилат-дигидроксид(гетеронуклеарный комплекс, медь-свинец салицилат) или смесь меди (II) гидроксид салицилата (2:2:1) 1 - водный (салицилат меди основной) и салицилата свинца (II) комплекса (салицилат свинца), или медь (II)-свинец (II) фталевокислая основная (ФМС) либо смесь их с никелевым комплексом, выбранным из ряда, включающего ди-никель (II) салицилат-дигидроксид (салицилат никеля основной), фталат никеля, никель(II) лауриновокислый основной, соль комплексную никелевую (II) основную жирных кислот C10-C16 (СЖК никеля основная). Используемые в данном изобретении салицилатные комплексы свинца и меди имеют с упомянутыми выше в зарубежных патентах салицилатами свинца и меди только общее название и отличаются от них химическим строением, более высоким содержанием металла в молекуле соединения и большей химической стабильностью (а. с. СССР N 332729, C 07 F 7/24, 1971 г.; N 694033, C 07 F 1/08. 1979 г.; N 531362, C 07 F 1/08, 1976 г.). Смесь индивидуальных соединений салицилатов свинца и меди и их гетеронуклеарный комплекс по своей каталитической активности идентичны, поэтому в составе предлагаемого топлива они являются взаимозаменяемыми. Композиция топлива с катализатором горения, включающим одновременно комплексные соединения свинца, меди и никеля, и характеристики горения такого топлива приводятся впервые в данном изобретении. При выборе состава и количества катализатора учитывается, что с увеличением в свинцово-медном катализаторе количества медного соединения повышается скорость горения топлива и область плато перемещается в сторону повышенных давлений. Введение дополнительно никелевого соединения приводит к дальнейшему росту скорости горения, расширению области наименьшей зависимости U(P) - плато и расположению его в диапазоне более высоких давлений. Катализатор вводится в топливо в количестве от 1 до 5 мас.%; предпочтительное содержание составляет 3-5 мас.%. Свыше 5 мас.% катализатор вводить нецелесообразно, т.к. он снижает энергетический уровень и ухудшает взрывчатые свойства топлива, повышая опасность его производства и эксплуатации,
Углерод используется в топливе для усиления действия катализаторов и регулирования скорости горения в широких пределах. С увеличением содержания углерода скорость горения топлива растет, однако рост ее не адекватен количеству вводимого углерода. При содержании углерода свыше 1-1,5 мас.% (зависит от рецептурного состава топлива, его углеродного баланса), прирост скорости горения уменьшается, постепенно выходя на участок полного насыщения (при содержании углерода от 1,5 до 2 мас.%). Поэтому верхний предел рекомендуемого количества углерода составляет 2 мас.%, хотя в отдельных случаях может использоваться и более высокое его содержание. В качестве стабилизатора горения БРТТ используются высокоплавкие оксиды, карбонаты металлов или металлические порошки типа алюминиево-магниевых сплавов, преимущественно с содержанием алюминия в сплаве от 5 до 50 мас.%. Из оксидов металлов предпочтение отдается диоксиду титана или оксидам магния и алюминия; из карбонатов - карбонатам кальция и магния, при разложении которых образуются оксиды кальция и магния с температурой плавления 2903 и 3098 К соответственно. Роль стабилизаторов горения сводится к образованию на поверхности горения прочных оксидных пленок, которые обеспечивают стабильную передачу тепла от слоя к слою, от газового потока к поверхности горения, обеспечивая тем самым стабильный режим горения топлива. Достаточное количество стабилизатора горения, как правило, составляет 1-3 мас.%. Однако при использовании металлических порошков, в зависимости от условий применения БРТТ, их количество может быть увеличено до 5 мас.% с целью повышения энергетического уровня БРТТ. Порошки сплавов вводятся в топливо обработанными (пассивированными) хроматом или бихроматом калия с последующей гидрофобизацией их стеаратом натрия с целью придания поверхности частиц сплавов гидрофобных свойств, что необходимо для обеспечения химической стабильности и технологичности топлива. В качестве пластификатора нитроцеллюлозы предпочтительно используется нитроглицерин, обеспечивающий заданный уровень топлива. С целью улучшения его пластифицирующей способности, снижения взрывчатых свойств топлива, а также в качестве углеродобразующей добавки, способствующей усилению действия катализаторов, вводится дополнительный пластификатор - динитротолуол. Оптимальное содержание в топливе динитротолуола составляет от 0,5 до 4 мас.%, свыше 4 мас.% его ввод в данное БРТТ нецелесообразен по причине снижения энергетического уровня топлива. В качестве пластификатора также может использоваться смесь нитроглицерина с диэтиленгликольдинитратом. В этом случае увеличивается углеродный баланс топлива, что благоприятно сказывается на действии катализаторов горения. Введение в топливо диэтиленгликольдинитрата приводит к снижению его энергетического запаса, для компенсации энергетических потерь используется алюминиево-магниевый сплав в количестве до 5 мас.%. Соотношение между нитроглицерином и диэтиленгликольдинитратом составляет, в основном, от 52:48 до 50:50. Стабилизатор химической стойкости включает в свой состав централит или его смесь с N-нитрозодифениламином либо с дифениламином. Оптимальное количество стабилизатора химической стойкости составляет 1,0-2,5 мас.%. В качестве технологических добавок в топливе используются минеральное масло - индустриальное или приборное, соль жирной кислоты (например, стеараты цинка, свинца или натрия), сульфорицинат и желатин, совместное использование которых обеспечивает необходимый комплекс реологических и технологических свойств топлива. Сульфорицинат и желатин вводят для обеспечения равномерности распределения компонентов и качества топливного полуфабриката. Общее количество технологических добавок в топливе составляет 0,5-2,5 мас.%. При использовании в роли катализатора горения никеля (II) лауриновокислого основного или СЖК никеля основного технологическую добавку - соль жирной кислоты можно не вводить. Изготовление и переработка топлива осуществляются по известной технологии смешения всех компонентов в водной среде при температуре 283-328 К с последующим отжимом топливной смеси до влажности 5-15 нас.%, вальцеванием при температуре 343-378 К, сушкой полуфабриката до влажности 0,3-1,0 мас.% и прессованием изделий (зарядов) на гидравлическом или шнек-прессе при температуре 338-363 К и давлении до 30 МПа. Конкретные примеры композиций топлива и их баллистические свойства приведены в таблицах 1 и 2. Основные свойства предлагаемого топлива представлены в таблице 3. Данные таблицы 1 свидетельствуют, что скорость горения топлива имеет уменьшенную зависимость от давления и может изменяться от 10,5 до 32 мм/с при давлении 10 МПа и от 9 до 43 мм/с на плато. Таким образом, в сравнении с прототипом расширены пределы регулирования скорости горения БРТТ. Термохимический коэффициент топлива (табл. 2), характеризующий температурную зависимость скорости горения, имеет высокие значения, т.е. уменьшенную зависимость U(Т). Работоспособность топлива проверена в стендовых условиях в модельных и натурных РД с подтверждением высоких внутрибаллистических характеристик и стабильной работы зарядов в интервале давлений от 1,5 до 50 МПа и выше. В зависимости от типа РД выбирается вариант топлива с необходимыми характеристиками, следовательно, с определенным химическим составом. При требовании невысокой скорости горения в диапазоне относительно низких давлений (до 10 МПа) целесообразно использовать топливо, содержащее в качестве катализатора горения соединения свинца и меди. Для обеспечения повышенной скорости горения используется катализатор, содержащий соединения свинца, меди, никеля. Комплекс физико-химических, термостойкостных, технологических и других свойств топлива обеспечивает возможность его изготовления, длительного хранения и эксплуатации в интервале температур от 223 до 323 К ( от -50 до + 50oC). Таким образом, за счет оптимального соотношения всех компонентов и эффективного многофункционального модификатора достигается улучшение баллистических характеристик топлива, а именно, регулирование скорости горения в широких пределах (от 10,5 до 43 мм/с на плато), уменьшенная зависимость U(P, T) как в области низких, так и высоких давлений (от 3-9 до 18-36 МПа), стабильность работы в РД в широком диапазоне давлений. Следовательно, поставленная задача выполнена полностью. Разработанное топливо рекомендовано для применения в объектах военного и гражданского назначения.
Класс C06D5/06 реакцией двух или нескольких твердых веществ
Класс C06B25/26 с органическим компонентом, не являющимся взрывчатым или термическим
водосодержащий пороховой взрывчатый состав - патент 2521637 (10.07.2014) | |
водосодержащий пороховой взрывчатый состав - патент 2243957 (10.01.2005) | |
твердое ракетное топливо баллиститного типа - патент 2203872 (10.05.2003) | |
взрывчатый состав - патент 2197454 (27.01.2003) | |
баллиститное топливо - патент 2189371 (20.09.2002) | |
водосодержащий пороховой взрывчатый состав - патент 2183209 (10.06.2002) | |
твердое ракетное топливо баллиститного типа - патент 2172730 (27.08.2001) | |
суспензионный взрывчатый состав - патент 2111944 (27.05.1998) | |
твердое топливо - патент 2090545 (20.09.1997) | |
водосодержащий пороховой взрывчатый состав - патент 2076089 (27.03.1997) |