способ электрохимической рекуперации алмазов

Классы МПК:C01B31/06 алмаз 
B23H3/00 Электрохимическая обработка, те удаление металла путем прохождения тока между заготовкой и электродом в присутствии электролита
C25F5/00 Электролитические способы удаления металлических слоев или покрытий
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное унитарное научно- исследовательское геологическое предприятие
Приоритеты:
подача заявки:
1999-11-29
публикация патента:

Изобретение относится к электрохимической рекуперации алмазов и сверхтвердых материалов из отработанного и бракованного инструмента, в частности буровых коронок и долот. Способ основан на прицепе анодного растворения металла матрицы алмазного инструмента в растворе электролита при периодическом прохождении импульсов биполярного тока обратной полярности. Продолжительность импульса составляет 0,1 - 0,2 от продолжительности периода тока в сети. Длительность t электрохимической рекуперации определяют по зависимости способ электрохимической рекуперации алмазов, патент № 2172294 где D1, D2 - диаметры алмазного инструмента, соответственно наружной и внутренний; h - высота обнажения алмаза, К - коэффициент, учитывающий влияние периодического измельчения тока на длительность рекуперации (К=0,6 - 0,9); способ электрохимической рекуперации алмазов, патент № 2172294 - коэффициент пропорциональности (способ электрохимической рекуперации алмазов, патент № 2172294=0,1 - 1,4); J - сила тока. Технический результат: повышение скорости анодного растворителя металла матрицы алмазного инструмента в условиях пассивации металла и снижение непроизводительности затрат электроэнергии. 2 ил., 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ электрохимической рекуперации алмазов, основанный на принципе анодного растворения металла матрицы алмазного инструмента в растворе электролита при прохождении электрического тока, отличающийся тем, что анодное растворение осуществляют при периодическом прохождении импульсов биполярного тока обратной полярности, при этом продолжительность импульса составляет 0,1 - 0,2 от продолжительности периода тока в сети, а длительность t электрической рекуперации определяют по зависимости

способ электрохимической рекуперации алмазов, патент № 2172294

где D1, D2 - диаметры алмазного инструмента, соответственно наружный и внутренний;

h - высота обнажения алмаза;

k - коэффициент, учитывающий влияние периодического изменения тока на длительность рекуперации (k=0,6-0,9);

способ электрохимической рекуперации алмазов, патент № 2172294 - коэффициент пропорциональности (способ электрохимической рекуперации алмазов, патент № 2172294=0,1-1,4);

J - сила тока.

Описание изобретения к патенту

Изобретение относится к электрохимической рекуперации алмазов и сверхтвердых материалов из отработанного и бракованного инструмента, в частности буровых коронок и долот.

Известен способ электрохимической рекуперации алмазов и сверхтвердых материалов из отработанного и бракованного инструмента /см. Г.А.Безалий. Об интенсификации процесса электрохимической рекуперации СТМ из отработанного и бракованного инструмента на металлической основе. В сб. Научные труды ИСМ АН УССР, 1984 г./. Этот способ основан на принципе анодного растворения металла матрицы алмазного инструмента в малоактивном к металлу электролите /растворе серной кислоты/.

Недостатком этого способа является низкая скорость анодного растворения металла матрицы алмазного породоразрушающего инструмента.

Наиболее близким по технологической сущности является способ электрохимической рекуперации алмазов из алмазного бурового инструмента /коронок и долот/, основанный на принципе анодного растворения металла матрицы алмазного инструмента в растворе активного к металлу электролита /раствор поваренной соли/ при прохождении через него постоянного электрического тока /см. Справочное руководство мастера геологоразведочного бурения. Л. Недра - 1983 г., с. 219 /. Алмаз при этом как диэлектрик не растворяется, чем обусловлено его обнажение. При этом способе скорость анодного растворения металла матрицы более высокая, чем у вышеописанного аналога.

Недостатком этого способа электрохимической рекуперации алмазов является невозможность повышения скорости анодного растворения металла матрицы в условиях пассивации металла и непроизводительные затраты электроэнергии.

Предлагаемое техническое решение направлено на повышение скорости анодного растворения металла матрицы алмазного инструмента в условиях пассивации металла за счет повышения положительной поляризации пассивированного металла матрицы и снижения непроизводительных затрат электроэнергии.

В предлагаемом способе электрохимической рекуперации алмазов, основанном на принципе анодного растворения металла матрицы алмазного инструмента в растворе электролита при прохождении электрического тока, анодное растворение осуществляют при периодическом прохождении импульсов биполярного тока обратной полярности. Продолжительность импульса составляет 01 - 0,2 от продолжительности периода тока в сети. Длительность электрохимической рекуперации "t" определяют по зависимости:

способ электрохимической рекуперации алмазов, патент № 2172294

где D1, D2 - диаметры алмазного инструмента, соответственно наружный и внутренний,

h - высота обнажения алмаза,

k - коэффициент, учитывающий влияние периодического изменения тока на длительность рекуперации /K = 0,6 - 0,9/,

способ электрохимической рекуперации алмазов, патент № 2172294 - коэффициент пропорциональности

/ способ электрохимической рекуперации алмазов, патент № 2172294 = 0,1 - 1,4/,

J - сила тока.

Благодаря тому, что процесс анодного растворения осуществляется при прохождении периодических импульсов биполярного тока обратной полярности, обеспечивается растворение металла матрицы при пассивации в активном режиме за счет достижения высокой положительной поляризации запассивированного металла матрицы, когда наблюдается заметное увеличение скорости его растворения, вызванное его перенасыщением и переходом в транспассивное состояние.

Растворение в транспассивном состоянии возможно лишь при потенциале, более положительном, чем потенциал выделения кислорода, что возможно достигнуть через область активированного растворения при поляризации. Применение периодического импульсного биполярного тока обратной полярности позволяет решить этот вопрос, в результате чего улучшается удаление продуктов растворения из приэлектродной зоны, повышается плотность тока, уменьшается нагрев электролита и значительно снижается расход электроэнергии на электролиз.

Вследствие того, что продолжительность импульса составляет 0,1 - 0,2 от продолжительности периода тока сети, устанавливается допустимая рациональная продолжительность периода анодного растворения в неподвижном электролите, что позволяет повысить скорость анодного растворения.

Растворение металла матрицы алмазного инструмента происходит как анодное, так как 80% времени на растворяемую матрицу действует ток положительной полярности и только 20% времени отрицательной полярности (см. фиг. 1 - кривая тока). Под положительной составляющей тока принимаем ток, текущий в цепи при положительном потенциале на алмазной коронке, т.е. во время t1, а под отрицательной составляющей - при отрицательном потенциале на коронке, т.е. во время t2. В процессе растворения коронка становится то анодом (t1), то катодом (t2). В течение времени (t1) происходит растворение, а во время (t2) осуществляется депассивация коронки.

Экспериментами в Тульском НИГП установлено, что если продолжительность импульса составляет менее 0,1 от продолжительности периода тока сети наблюдается падение скорости анодного растворения металла. При увеличении продолжительности импульса более 0,2 от продолжительности периода тока сети скорость анодного растворения металла остается постоянной. Поэтому оптимальная продолжительность импульса составляет 0,1 - 0,2 от продолжительности периода тока сети.

Благодаря тому, что длительность электрохимической рекуперации "t" рассчитывают по зависимости, определяется оптимальное значение этой длительности, что обеспечивает условия предупреждения возможности растворения слоя, не содержащего алмазы, и этим самым снижаются непроизводительные затраты электроэнергии.

На чертеже изображена установка для осуществления описываемого способа. Установка содержит транспортер 1, управляемый выпрямитель 2 со схемой управления 8, провода 3, изолирующую подставку 4, алмазные коронки 5, электролит 6, изолятор 7 (см. фиг. 2).

Предлагаемый способ электрохимической рекуперации алмазов осуществляется следующим образом.

В качестве электролита используется 10%-ный раствор поваренной соли NaCl, плотность тока составляет 1,5 А на 1 см2 торца коронки. При электрохимической рекуперации алмазного инструмента (коронок), матрица которого содержит до 45% меди по весу, переменный электрический ток от трансформатора 1 поступает на выпрямитель 2 с управляемой схемой 8, преобразовывается в периодический импульсный биполярный ток обратной полярности с продолжительностью импульса, составляющей 0,1 - 0,2 продолжительности периода тока сети, который при прохождении через металл (медь) матрицы алмазной коронки 5, погруженной в электролит 6, благодаря повышению положительной поляризации его интенсивно растворяет металл. При этом во время t1 происходит растворение, а во время t2 - депассивация коронки. Вследствие чего значительно сокращается длительность электрохимической рекуперации t, определяемая по вышеприведенной зависимости. При подсчете длительности рекуперации по этой зависимости параметры должны быть приведены со следующими размерностями:

D1, D2, h - в метрах (м), J - в Амперах (A), а способ электрохимической рекуперации алмазов, патент № 2172294 = (0,1 - 1,4) м3/Aспособ электрохимической рекуперации алмазов, патент № 2172294c,

В таблице приведены данные по расчетной длительности рекуперации и скорости растворения матрицы отработанных алмазных коронок типа 01А3-76.

Как видно из данных таблицы, при рекуперации матриц одного и того же состава и одинаковой высоты скорость растворения по предлагаемому техническому решению в 1,7 раза выше, чем с применением способа рекуперации по аналогу.

Заявленное техническое решение может быть осуществлено при помощи описанных в заявке средств.

Технико-экономическая эффективность предлагаемого технического решения заключается в повышении производительности процесса рекуперации алмазов из отработанного и бракованного инструмента на 30-50%.

Класс C01B31/06 алмаз 

способ получения сверхтвердого композиционного материала -  патент 2523477 (20.07.2014)
способ определения угла разориентированности кристаллитов алмаза в композите алмаза -  патент 2522596 (20.07.2014)
поликристаллический алмаз -  патент 2522028 (10.07.2014)
способ получения наноалмазов при пиролизе метана в электрическом поле -  патент 2521581 (27.06.2014)
устройство для получения алмазов -  патент 2514869 (10.05.2014)
способ селективной доочистки наноалмаза -  патент 2506095 (10.02.2014)
способ избирательного дробления алмазов -  патент 2492138 (10.09.2013)
способ получения сверхтвердого композиционного материала -  патент 2491987 (10.09.2013)
способ получения алмазов с полупроводниковыми свойствами -  патент 2484189 (10.06.2013)
способ получения синтетических алмазов и установка для осуществления способа -  патент 2484016 (10.06.2013)

Класс B23H3/00 Электрохимическая обработка, те удаление металла путем прохождения тока между заготовкой и электродом в присутствии электролита

устройство для электрохимической маркировки внутренней поверхности ствола оружия -  патент 2514763 (10.05.2014)
способ электрохимической обработки лопаток с двумя хвостовиками газотурбинного двигателя и устройство для его осуществления -  патент 2514236 (27.04.2014)
способ электрохимической обработки (варианты) -  патент 2504460 (20.01.2014)
электролит для электрохимической обработки на импульсном униполярном токе твердых сплавов -  патент 2489235 (10.08.2013)
способ размерной электрохимической обработки -  патент 2489234 (10.08.2013)
способ изготовления электрода-инструмента при объемной электрохимической обработке (эхо) -  патент 2481928 (20.05.2013)
способ изготовления деталей сложной формы -  патент 2477675 (20.03.2013)
способ электрохимической обработки -  патент 2476297 (27.02.2013)
способ и устройство для электрохимической резки тонкостенных электропроводных профилей с полировкой среза и скруглением кромок -  патент 2473412 (27.01.2013)
электролит для электрохимической обработки -  патент 2471595 (10.01.2013)

Класс C25F5/00 Электролитические способы удаления металлических слоев или покрытий

способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами -  патент 2467098 (20.11.2012)
установка для удаления покрытия и способ ее эксплуатации -  патент 2460829 (10.09.2012)
способ электрохимического удаления металлического покрытия с конструктивной детали -  патент 2405070 (27.11.2010)
способ определения момента окончания процесса электролитно-плазменного удаления покрытия -  патент 2360045 (27.06.2009)
контур управления установкой удаления покрытий с деталей -  патент 2257427 (27.07.2005)
способ удаления жаростойкого металлического покрытия -  патент 2228396 (10.05.2004)
способ определения момента окончания процесса электролитно- плазменного удаления покрытия -  патент 2227181 (20.04.2004)
устройство и способ для удаления покрытий -  патент 2215068 (27.10.2003)
способ удаления алюминидного покрытия на основе никеля -  патент 2211261 (27.08.2003)
способ извлечения золота из золотого покрытия на подложке из меди или ее сплава -  патент 2187580 (20.08.2002)
Наверх