рабочая жидкость электролитического резистивного преобразователя

Классы МПК:G01C9/18 с помощью жидкости 
Автор(ы):, ,
Патентообладатель(и):Кривоносов Ростислав Иванович (RU)
Приоритеты:
подача заявки:
2000-09-14
публикация патента:

Изобретение используется в геофизическом приборостроении в устройствах для определения углов наклона объектов, в частности при инклинометрических исследованиях скважин. Рабочая жидкость (РЖ) представляет собой раствор ионофора в жидком органическом растворителе, характеризующийся числами переноса количества электричества катиона и аниона, близкими к 0,5. Ионофором является гексафторофосфат калия, а растворителем - пропиленкарбонат (4-метил-1,3-диоксоланон-2). Концентрация ионофора составляет от 1,0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 до 3,0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3. Гексафторофосфат калия, в отличие от других ионофоров, не катализирует термический распад пропиленкарбоната. Стабильность резистивных свойств РЖ сохраняется в диапазоне температур окружающей среды от 230 до 473 К при незначительной емкости составляющей полного электрического сопротивления электролитических ячеек. РЖ инертна к коррозионностойким сталям, имеет температуры замерзания и кипения, практически соответствующие чистому растворителю (Тзам = 223 К, Ткип = 515 К). Обеспечено повышение технических характеристик датчиков наклона и других типов электролитических резистивных преобразователей в широком диапазоне температур, сохранена термостабильность резистивных свойств жидкости и индифферентность к материалу электродов при высоких температурах. 2 ил., 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Рабочая жидкость электролитического резистивного преобразователя, представляющая собой раствор ионофора в жидком органическом соединении, с числами переноса катионов и анионов ионофора, близкими к 0,5, отличающаяся тем, что жидким органическим растворителем служит пропиленкарбонат(4-метил-1,3-диоксоланон-2), а ионофором - калия гексафторофосфат при концентрациях в пропиленкарбонате от 1,0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 до 3,0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 кг-экв рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 м-3.

Описание изобретения к патенту

Изобретение относится к геофизическому приборостроению и может быть использовано в устройствах для определения угла наклона объекта, в частности при инклинометрических исследованиях скважин, а также в других электролитических резистивных преобразователях.

Преобразующим элементом в электролитических резистивных преобразователях является заключенный между металлическими электродами слой рабочей жидкости (РЖ), эффективное сечение и толщина которого, зависимые от измеряемого угла наклона или взаимного перемещения электролита и электрода, определяют электрическое сопротивление преобразователя [1,2].

При геофизических исследованиях скважин РЖ преобразователя может находиться при температурах до 473 К [3], что повышает требования к термостабильности ее свойств (в частности, удельной электропроводности).

Известна РЖ преобразователя угла наклона, состоящая из спиртов алифатического ряда с растворенными ионофорами, преимущественно в виде галогенидов щелочных металлов, а также их нитратов [4].

Основными недостатками жидкостей, приготовленных на основе спиртов, является их взаимодействие с конструкционными материалами из неблагородных металлов, в результате чего изменяется значение удельной электропроводности РЖ.

В [5] рекомендуется, используя в качестве растворителя метанол, заменить хлористый литий, служащий электропроводным фоном, на перхлорат лития. Область рабочих потенциалов электродов, определяющая "электрохимическую устойчивость" растворителя, в этом случае выше, чем для хлорида лития [6, с. 201].

В [7] показано, что применением композиционного растворителя, состоящего из 28-32% этанола и 68-72% толуола с использованием в качестве электропроводного фона хлорида олова, удается ограничить прирост удельной электропроводности РЖ при 343 К за 20 месяцев на 8%. Однако за первые 4 месяца он составлял почти 50%. Такое поведение РЖ авторы объясняют неполной ее индифферентностью к конструкционным неблагородным металлам. Очевидно, что необходимость сколько-либо длительной "приработки" РЖ с конструкционными материалами преобразователя осложняет технологию изготовления последнего. Невысока также рекомендуемая предельная рабочая температура жидкости (343 К).

Ближайшей по технической сущности и достигаемому результату предлагаемого изобретения является РЖ в виде электролита на основе органического растворителя с числами переноса количества электричества для катионов и анионов, близкими к 0,5 [8]. Она принята нами в качестве прототипа. Соблюдение требования равенства чисел переноса катионов и анионов позволяет избежать изменений концентраций электропроводного фона в приэлектродных объемах электролита вследствие электролизных эффектов. Это условие следует также относить к "электрохимической устойчивости" РЖ.

При повышенных температурах РЖ должна обладать также и термохимической стабильностью, которая обуславливается "собственной" термостойкостью органического растворителя и электропроводного фона. Последний, а также конструкционный материал преобразователя могут проявить термокаталитическое воздействие (влияние) на процесс разложения растворителя. В случае частичного термического превращения в РЖ получающиеся продукты не должны нарушать однофазность раствора и значимо влиять на его удельную электропроводность.

Таким образом, основным недостатком прототипа РЖ является ее значительная температурная нестабильность, каталитическое воздействие и агрессивность к конструкционным материалам преобразователя, требующая применения драгметаллов.

Следует отметить, что в прототипе [8] не решалась задача по термической стабильности РЖ. Так, приводимая в качестве примера РЖ, представляющая собой раствор йодида аммония в этаноле, при условиях испытаний [7] обнаружила существенное изменение удельной электропроводности во времени.

Основным недостатком жидкостей, приготовленных на основе спиртов, как в аналогах, так и в прототипе, является их взаимодействие с конструкционными материалами из неблагородных металлов, в результате чего изменяется (уменьшается) значение удельного электрического сопротивления жидкости.

Таким образом, основным недостатком перечисленных РЖ является их значительная температурная нестабильность, каталитическое воздействие и агрессивность к конструкционным материалам преобразователя, требующая применения драгметаллов.

Сущность изобретения заключается в достижении стабильности электропроводной рабочей жидкости резистивного преобразователя при высокой температуре окружающей среды путем применения в качестве рабочей жидкости электролита на основе жидкого органического соединения (растворителя) и ионофора с близкими числами переноса катионов и анионов, индифферентного к конструкционному материалу резистивного преобразователя и состоящего из пропиленкарбоната и калия гексафторофосфата, концентрация которого в полипропиленкарбонате составляет 1,0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 до 3,0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3.

Как и в прототипе, в предлагаемом изобретении растворителем является органическое соединение, но отличное от прототипа, а именно пропиленкарбонат (ПК) вместо этанола. Однофазность этого растворителя в широком диапазоне температур (Ткип = 514,8 K, Тпл = 322,3 K) [9] обеспечивает сохранность конструкции преобразователя.

Отличительной особенностью этого растворителя является его относительно высокая термостойкость. Так, по данным [10] при температуре 443 K глубина его разложения в течение года составляет 0,6%. Продукты этого процесса (углекислый газ и окись пропилена) неионогенны в отсутствие влаги и поэтому не влияют на электропроводность жидкости.

В качестве ионофора, растворяемого в ПК, выбран гексафторофосфат калия (K[PF6]), который, соответственно прототипу, характеризуется числами переноса катиона (K+) и аниона ([PF-]) в области умеренных и низких концентраций, весьма близкими к 0,5 [11] . По сравнению с другими ионофорами потенциал электроокисления ПК в присутствии K[PF6] сравнительно высок [6, с. 202].

Известно [12] , что ряд веществ-ионофоров, растворимых в ПК, являясь в определенной области электродных потенциалов электрохимически индифферентными (например, перхлораты), проявляют в то же время термокаталитические свойства и способствуют распаду ПК. Как показали наши исследования, K[PF6] не обладает такими качествами, отрицательно сказывающимися на стабильности свойств РЖ.

Таким образом, РЖ, состоящая из растворенного в ПК гексафторофосфата калия, обладает удачным сочетанием свойств компонентов для осуществления стабильности резистивных параметров, что определяет ее существенные признаки, отличные от прототипа и аналогов. Соблюдение качественного состава РЖ достаточно во всех случаях для достижения технического результата.

Требуемое значение сопротивления электролитических ячеек преобразователя с учетом их конструкции при этом достигается путем выбора соответствующей концентрации РЖ по K[PF6].

Сравнительно высокие оптимальные значения электрических сопротивлений ячеек (как 8,5 - 12,5 кОм в [7]) требуют применения РЖ с низкими концентрациями, сведения по которым в литературных источниках [11, с. 180, 200] отсутствуют.

Экспериментально нами установлено, что в области концентраций растворов K[PF6] до 1.0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-3 кмоль/м3 в ПК удельная электропроводность подчиняется уравнению

рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 = 7,54рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-6+2,51рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932m (1)

где рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 - удельная электропроводность при 25oC в Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 м-1;

m - концентрация К[PF6]кмольрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3.

Обнаружено также, что в области концентраций 1.0рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 - 3.0 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 кмоль/м3 электрическая емкость ячеек оказывается сравнительно малой, что благоприятно для уменьшения фазовой погрешности при определении активного сопротивления РЖ между электродами. Конкретизация области концентраций РЖ является дополнительным признаком изобретения, характеризующим его применение с целью достижения улучшенного результата по точности измерения угла.

На фиг. 1 представлена гистограмма влияния температуры на оптическую плотность и удельную электропроводность растворов ионофоров в пропиленкарбонате.

Условия испытаний: температура - +200oC; продолжительность термомостатирования - 218 часов; сосуды - стеклянные герметичные ампулы (6 шт.), содержащие металлический образец из стали 12Х18Н10Т.

Оптическая плотность (D) в относительных единицах, сравнительно с ампулой, заполненной ПК, не помещенной в термостат.

Удельная электропроводность (рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932) в Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-1.

Верхние столбцы - D после термостатирования.

Нижние столбцы: незаштрихованные - рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 до термостатирования, заштрихованные - рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 после термостатирования. Ампулы содержат:

1. ПК, без растворенного ионофора;

2. Калия тетрафтороборат, K[BE4], в ПК, 3 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-3 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3.

3. Никеля перхлорат, Ni(ClO4)2, в ПК, 2,5рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-5 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3.

4. Фенилсульфотетрафтороборат, PhS[BF4] в ПК, 3 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 10-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3.

5. Фeнилcульфoгeкcaфтopoфocфaт, PhS[PF6] в ПK, 2рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3.

6. Калия гексафторофосфат, К[PF6] в ПК, 2,2рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3.

На фиг. 2 показана зависимость эквивалентной электропроводности (рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932) в Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м2 рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 кг-экв-1 и электрической емкости измерительной ячейки (С) в нФ для растворов K[PF6] в ПК от концентрации (m) в степени 1/2, (m в кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3)

1 - эквивалентная электропроводность;

2 - электрическая емкость измерительной ячейки с платиновыми электродами. Температура 298 K.

Термический распад ПК сопровождается потемнением раствора на его основе, что увеличивает оптическую плотность жидкости. Это более заметно в случаях, когда растворяемые в ПК ионофоры проявляют каталитические свойства и способны реагировать с материалами конструкции преобразователя. При этом отмечено сильное влияние воды в виде примеси в растворе [10]. Поэтому применяемый ПК [9] подвергался сильной очистке [11, с. 235].

Из гистограммы (фиг. 1) видно, что растворы испытуемых ионофоров, кроме раствора K[PF6], характеризуются значительными увеличениями оптической плотности за время термостатирования, а также уменьшением удельной электропроводности раствора. Последнее связано с уменьшением ионной концентрации за счет реакций ионофора с ПК и с металлическим образцом. В ампулах с чистым растворителем и с раствором K[PF6] в ПК как оптическая плотность, так и электропроводность (столбцы гистограммы 1 и 6) изменились несущественно. Это свидетельствует об индифферентности K[PF6] к растворителю и металлическому образцу из стали 12Х18Н10Т.

Установлено, что РЖ, соответствующая по составу содержимому в ампуле N 6 (см. надпись к фиг. 1) имеет удельную электропроводность, зависимую от температуры измерений (в диапазоне 228 - 473oK) по уравнению:

рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932

Данные на фиг. 2 позволяют вычислить путем экстраполяции на m=0 предельное значение эквивалентной электропроводности K[PF6] в ПК.

рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932= 2,62 Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м2рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932кг-экв-1

Учитывая имеющееся в литературе [6, с. 172] значение предельной подвижности катиона калия в пропиленкарбонатном растворе,

рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932к = 1,2 Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м2рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932кг-экв-1

Согласно закону Кольрауша о независимости движения ионов предельная подвижность гексафторофосфат-аниона составит:

рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932 = рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932-рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932к = 1,42 Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м2рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932кг-экв-1,

а число переноса этого иона:

рабочая жидкость электролитического резистивного   преобразователя, патент № 2172932.

Число переноса иона калия:

tк= 1-tрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932= 0,46

Таким образом, дополнительно подтверждается независимым от литературных данных методом [11, с. 99] соблюдение рекомендаций по прототипу [8], выражающихся в близости чисел переноса катиона и аниона электропроводного фона РЖ к 0,5.

Данные на фиг. 2 наряду с уравнениями (1,2) могут быть использованы для расчетов преобразователей угла наклона при их проектировании.

Известно [1, с. 16], что минимизация емкостной составляющей полного сопротивления преобразователя угла наклона является важной задачей.

Выбор диапазона концентраций РЖ решает эту задачу полностью. Уменьшение межэлектродной емкости электролитической ячейки, каковой по существу является преобразующий элемент измерителя угла, связано с известным эффектом аномальных изменений диэлектрической постоянной неводных растворов с их концентрацией в области больших разбавлений [11, с. 81]. Как видно на фиг. 2, до концентрации примерно 3рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3 емкость измерительной ячейки возрастает относительно мало. Поэтому указанная концентрация может считаться максимальной для РЖ с удельной электропроводностью, соответственно уравнению (1) равной 7,6рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-1. При конструировании преобразователя угла наклона цилиндрического типа [2] такая величина удельной электропроводности РЖ позволяет реализовать сопротивление отдельной электролитической ячейки примерно в 8 кОм.

Минимальной концентрацией РЖ по этому признаку следует считать 1.0рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3, что соответствует удельной электропроводности 2,6рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 Смрабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-1, которая обеспечит электрическое сопротивление для той же упомянутой выше конструкции преобразователя величиной в 23 кОм.

Очевидно, что диапазон концентраций РЖ 1.0рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4-3рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3 обеспечивает также реализацию сопротивлений 8,5 - 12,5 кОм, характеризуемых в [7] как оптимальные при питании преобразователя переменным током напряжением 4 B.

Преобразователи угла наклона цилиндрического типа, изготовленные из стали 12Х18Н10Т (электроды, корпус), включающие также детали из фторопласта 4 и стекла (электроизоляционные материалы), заполненные РЖ с m = 2,2рабочая жидкость электролитического резистивного   преобразователя, патент № 217293210-4 кг-экврабочая жидкость электролитического резистивного   преобразователя, патент № 2172932м-3 K[PF6] в ПК, как опытные образцы, были подвергнуты температурному воздействию, аналогичному скважинным условиям (Т = 473 K). Время их выдержки в воздушном термостате составило 200 часов. Результаты наблюдений представлены в таблице.

Кроме того, определено, что электрическое сопротивление отдельной ячейки преобразователя (между коаксиальными поверхностями электрода и цилиндрического канала корпуса) при угле наклона 0o до испытаний составило 12,99 кОм, после испытаний - 13,13 кОм, а межэлектродная емкость - соответственно 0,114 нФ и 0,130 нФ.

Незначительность изменений активной и емкостной составляющих сопротивления, а также калибровочная характеристика (таблица) преобразователей позволяют считать, что при эксплуатации последних при повышенных температурах в определенной мере сохраняется идентичность состояния электродной системы и РЖ, составляющих преобразующий элемент.

Источники информации

1. Дейнега Г.А., Никонов В.Г. Разработка датчиков ориентации с улучшенными метрологическими характеристиками. Общество "Знание" УССР (Автоматика и электроника). K., 1982, с. 14-16.

2. Патент РФ N 2017950, кл. E 21 В 47/022, 15.08.1994.

3. Инклинометры. Общие технические требования. Стандарт СЭВ 1460-86. Изд-во Стандартов, 1986 г.

4. Патент Франции N 1173494, кл. G 01 C 9/00, 1959.

5. А.с. СССР N 1042087. Электропроводная жидкость для маятниковых приборов, кл. H 01 С 17/00, 15.09.83. Авт. Дорофеева Н.Г. и др.

6. Фиалков Ю. Я. , Грищенко В.Ф. Электровыделение металлов из неводных растворов. К., Наукова Думка, 1985, с. 201, 202.

7. А.с. СССР N 1151818, кл. G 01 C 9/18. Авт. Асрединов В.Ф., Кузьменко Б.Б. и Лужина В.Л.

8. А.с. N 654856. Жидкость-наполнитель для ампул электролитического датчика угла. Кл. G 01 C 9/18, 30.03.79, бюл. N 12. Авт. Блинов В.П (прототип).

9. Пропиленкарбонат (Пропиленгликолькарбонат; 4-метил-1,3-диоксоланон-2-он). ТУ 6-09-11-2035-87, изд-во "Ангарский завод химреактивов".

10. Колосовская Г. И., Краевая Т.Е., Штейнберг А.С. и др. Исследование кинетики реакции гидролиза пропиленкарбоната. Термическое разложение пропиленкарбоната. В сб. ГИПХ "Работы по термодинамике и кинетике химических процессов". Л., 1974, с. 94, 103.

11. Карапетян Ю.А., Эйчис В.Н. Физико-химические свойства электролитных неводных растворов. М., Химия, 1989, с. 99, 200, 235.

12. Шапиро А. Л., Любовский И.С., Чеховская В.П., Воробьев В.Л. Термокаталитический распад пропиленкарбоната. В сб. ВНИИ Нефтехим "Алкиленкарбонаты". Л., 1975, с.103.

Класс G01C9/18 с помощью жидкости 

Наверх