способ очистки рутения
Классы МПК: | C22B11/00 Получение благородных металлов C22B3/44 химическими способами |
Автор(ы): | Малахов В.Ф., Шульгин Д.Р., Ходюков Б.П. |
Патентообладатель(и): | ОАО "Красноярский завод цветных металлов имени В.Н. Гулидова" |
Приоритеты: |
подача заявки:
2000-05-03 публикация патента:
10.11.2001 |
Изобретение относится к металлургии благородных металлов и может быть использовано при аффинаже рутения. Способ включает растворение пентахлоронитрозорутената аммония, переосаждение рутения из раствора в виде тетранитрогидроксонитрозорутената натрия, отделение осадка, отмывку его водой при комнатной температуре и Ж : Т = 0,7 - 1,4, растворение отмытой соли и получение из раствора вновь пентахлоронитрозорутената аммония, но уже более высокой чистоты. Способ позволяет интенсифицировать получение конечной соли рутения и повысить ее качество. 2 табл.
Рисунок 1, Рисунок 2
Формула изобретения
Способ очистки рутения, включающий растворение пентахлоронитрозорутената аммония, осаждение рутения из раствора в виде осадка тетранитрогидроксонитрозорутената натрия, отделение осадка, его растворение и получение из раствора вновь пентахлоронитрозорутената аммония с последующим извлечением рутения, отличающийся тем, что перед растворением осадок тетранитрогидроксонитрозорутената натрия отмывают в воде при комнатной температуре и отношении Ж : Т = 0,7 - 1,4.Описание изобретения к патенту
Изобретение относится к металлургии благородных металлов и может быть использовано при аффинаже рутения. Известен способ очистки рутения, включающий: растворение пентахлоронитрозорутената аммония, осаждение рутения из раствора в виде тетранитрогидроксонитрозорутената натрия, отделение осадка, его растворение и получение из раствора вновь пентахлоронитрозорутената аммония (Масленицкий И.Н., Чугаев Л.В., Борбат В.Ф. и др. Металлургия благородных металлов. - М.: Металлургия, 1987, с. 413-414). Способ выбран в качестве прототипа. Недостатком способа является то, что за один цикл очистки он не позволяет снизить содержание примесей в рутении до уровня, предъявляемого к аффинированному металлу. Как правило, возникают проблемы с отделением платины и палладия. Кроме этого, осадки тетранитрогидроксонитрозорутената натрия содержат очень много хлорида натрия (30-50%), поэтому растворы от их выщелачивания имеют невысокое содержание рутения и насыщены NaCl и, как следствие, полученные из этих растворов соли пентахлоронитрозорутената аммония сильно загрязняются хлоридом натрия и выход солей низкий. Предлагается новый способ очистки рутения, техническим результатом которого является повышение степени очистки и выхода очищенного металла. Способ включает: растворение пентахлоронитрозорутената аммония, осаждение рутения из раствора в виде осадка тетранитрогидроксонитрозорутената натрия, отделение осадка, его растворение и получение из раствора вновь пентахлоронитрозорутената аммония с последующим извлечением рутения, согласно изобретению перед растворением осадок тетранитрогидроксонитрозорутената натрия отмывают в воде при комнатной температуре и отношении Ж : Т = 0,7 - 1,4. Пентахлоронитрозорутенат аммония растворяют с целью переведения рутения в раствор. Из полученного раствора рутений осаждают в виде тетранитрогидроксонитрозорутената натрия. При этом основная масса примесей платиновых металлов остается в маточном растворе. Затем выделенный осадок соли рутения отмывают в воде. На этой операции из осадка выщелачивается основная масса примеси хлорида натрия и удаляются с поверхности сорбированные соединения других элементов. Отмывку осадка ведут при комнатной температуре. С повышением температуры растут потери рутения с промывкой. Отношение Ж : Т зависит от содержания NaCl в осадке соли рутения. Здесь важно, чтобы при выбранном Ж : Т водная фаза была насыщена хлоридом натрия. В такой среде растворимость тетранитрогидроксонитрозорутената натрия минимальна. Опыты показали, что при отмывке промышленных осадков тетранитрогидроксонитрозорутената натрия это условие стабильно выполняется при Ж : Т = 0,7 - 1,4. Далее отмытую соль рутения растворяют в воде (Ж : Т = 3) и из полученного раствора вновь осаждают пентахлоронитрозорутенат аммония, но уже более высокой чистоты. Пример 1. Очистка рутения с использованием известного способа-прототипа. 100 г технического пентахлоронитрозорутената аммония выщелочили в воде при соотношении Ж:Т=6, раствор отфильтровали и при нагревании обработали нитритом натрия до pH 5,0. Нитрованный раствор упарили до появления соли, охладили до комнатной температуры и отфильтровали образовавшийся осадок тетранитрогидроксонитрозорутената натрия. Затем этот осадок растворили в воде (Ж: Т= 3), отделили примеси неблагородных элементов, раствор обработали соляной кислотой, хлоридом аммония и при нагревании осадили из него пентахлоронитрозорутенат аммония. Полученную пульпу охладили до комнатной температуры, разбавили ее водой до полного растворения кристаллов хлоридов натрия, после этого отфильтровывали пентахлоронитрозорутенат аммония, прокалили его и все продукты проанализировали. Раствор от выщелачивания пентахлоронитрозорутената аммония (0,69 л) содержал 33,28 г/л рутения. Из других благородных металлов в заметных количествах присутствовали платина (0,085 г/л) и палладий (1,29 г/л). После осаждения тетранитрогидроксонитрозорутената натрия в маточном растворе (0,16 л) осталось, г/л: 0,280 Pt; 5,08 Pd; 10,01 Ru. Извлечение рутения в соль составило 93%. Раствор из выщелачивания тетранитрогидроксонитрозорутената натрия в воде (0,62 л) содержал 34,45 г/л рутения, 0,010 г/л платины и 0,11 г/л палладия. После осаждения пентахлоронитрозорутената аммония в маточном растворе (0,6 л) осталось 0,47 г/л рутения. Извлечение Ru в эту соль составило 91,8% от общего его запуска в переработку. Результаты анализа металла, полученного после термолиза пентахлоронитрозорутената аммония, приведены в табл. 1. Пример 2. Очистка рутения с использованием предлагаемого способа. 100 г технического пентахлоронитрозорутената аммония выщелачили в воде при соотношении Ж:Т=6, раствор отфильтровали и при нагревании обработали нитритом натрия до pH 5,0. Нитрованный раствор упарили до появления соли, охладили до комнатной температуры и отфильтровали образовавшийся осадок тетранитрогидроксонитрозорутената натрия. Затем этот осадок распульповали в воде (Ж:Т=1), при комнатной температуре пульпу перемешали 30 мин и отфильтровали. Отмытый тетранитрогидроксонитрозорутенат натрия растворили в воде (Ж:Т=3), отделили примеси неблагородных элементов, раствор обработали соляной кислотой, хлоридом аммония и при нагревании осадили из него пентахлоронитрозорутенат аммония. Полученную пульпу охладили до комнатной температуры, разбавили ее водой до полного растворения кристаллов хлорида натрия, после этого отфильтровали пентахлоронитрозорутенат аммония, прокалили его и все продукты проанализировали. Раствор от выщелачивания пентахлоронитрозорутената аммония (0,67 л) содержал 34,27 г/л рутения, 0,087 г/л платины и 1,33 г/л палладия. После осаждения тетранитрогидроксонитрозорутената натрия в маточном растворе (0,15 л) осталось, г/л: 0,299 Pt; 5,42 Pd; 10,48 Ru. Извлечение рутения в соль составило 93,2%. При промывке тетранитрогидроксонитрозорутената натрия было получено 0,14 л раствора с содержанием, г/л: Pt - 0,046; Pd - 0,49; Ru - 6,86. В этот промпродукт перешло 4,2% рутения. Раствор от выщелачивания тетранитрогидроксонитрозорутената натрия в воде (0,28 л) содержал 72,96 г/л рутения, концентрация платины и палладия была ниже чувствительности их определения методом РСА. После осаждения пентахлоронитрозорутената аммония в маточном растворе (0,2 л) осталось 0,39 г/л рутения. Извлечение Ru в эту соль составило 88,6% от общего его запуска в переработку. Результаты анализа металла, полученного после термолиза пентахлоронитрозорутената аммония, приведены в табл. 2. Из приведенных примеров видно, что после растворения отмытого тетранитрогидроксонитрозорутената натрия раствор получается в два раза богаче по рутению. Естественно, такой промпродукт более удобен для последующей переработки: меньше маточных растворов от осаждения пентахлоронитрозорутената аммония, в два раза больше выход этой соли и, соответственно, выше производительность и меньше незавершенное производство по рутению. А самое главное преимущество предлагаемого способа заключается в том, что он позволяет за один цикл очистки получить аффинированный рутений. При использовании известного способа (прототипа) такое качество металла не достигается (табл. 1).Класс C22B11/00 Получение благородных металлов
Класс C22B3/44 химическими способами