способ подготовки углеводородного газа к транспорту "оптимет"

Классы МПК:B01D53/00 Разделение газов или паров; извлечение паров летучих растворителей из газов; химическая или биологическая очистка отходящих газов, например выхлопных газов, дыма, копоти, дымовых газов, аэрозолей
B01D53/26 сушка газов или паров 
F25J3/00 Способы и устройства для разделения компонентов газовых смесей, включая использование сжижения или отверждения
F25J3/02 ректификацией, те путем непрерывного обмена тепла и материала между потоком пара и потоком жидкости
F17D1/05 предупреждение замерзания
E21B43/00 Способы или устройства для добычи нефти, газа, воды, растворимых или плавких веществ или полезных ископаемых в виде шлама из буровых скважин
Автор(ы):, , , , , , , , , ,
Патентообладатель(и):ООО "Уренгойгазпром" ОАО "Газпром"
Приоритеты:
подача заявки:
1999-12-22
публикация патента:

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки и заводской обработки углеводородных газов. Способ подготовки газоконденсатной смеси включает в себя подачу газа с кустов скважин на трехступенчатую сепарацию, компримирование и охлаждение газового потока, введение в него водорастворимого летучего ингибитора гидратообразования, выведение из сепараторов жидкости, разделение ее на углеводородную и водную фазы, направление последней в поток газа, поступающий на одну из ступеней сепарации, и подачу водной фазы, отводимой из сепаратора третьей ступени, в теплообменный аппарат первой ступени сепарации. Водную фазу, отводимую из сепаратора второй ступени сепарации, смешивают с водной фазой, отводимой с первой ступени сепарации, и полученную смесь подают в массообменную часть десорбера-сепаратора, устанавливаемого на потоке газа после его компримирования, а водную фазу, выделяющуюся в десорбере-сепараторе, направляют на утилизацию. Предусматривается также подача водной фазы с первой ступени сепарации в верхнюю часть массообменной секции десорбера-сепаратора, а жидкой водной фазы со второй ступени сепарации - в среднюю часть массообменной секции десорбера-сепаратора. Изобретение позволяет снизить расход летучего ингибитора гидратообразования и улучшить экологические показатели работы установки подготовки газа на поздних стадиях эксплуатации газоконденсатного месторождения при падении пластового давления. 2 с. и 1 з.п.ф-лы, 2 табл., 1 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Способ подготовки углеводородного газа к транспорту, включающий подачу газа с кустов скважин на трехступенчатую сепарацию, компримирование и охлаждение газового потока, введение в него водорастворимого летучего ингибитора гидратообразования, выведение из сепараторов жидкости, разделение ее на углеводородную и водную фазы, направление последней в поток газа, поступающий на одну из предыдущих ступеней сепарации, и подачу водной фазы, отводимой из сепаратора третьей ступени, в теплообменный аппарат первой ступени сепарации, отличающийся тем, что водную фазу, отводимую из сепаратора второй ступени, смешивают с водной фазой, отводимой с первой ступени сепарации, и полученную смесь подают в массообменную часть десорбера-сепаратора, устанавливаемого на потоке газа после его компримирования, а водную фазу, выделяющуюся в десорбере-сепараторе, направляют на утилизацию.

2. Способ по п.1, отличающийся тем, что водную фазу, выделившуюся в сепараторе третьей ступени, делят на две части, одну из которых подают на кусты скважин, а вторую смешивают с водной фазой из сепаратора второй ступени и подают в массообменную часть десорбера-сепаратора.

3. Способ подготовки углеводородного газа к транспорту, включающий подачу газа с кустов скважин на трехступенчатую сепарацию, компримирование и охлаждение газового потока, введение в него водорастворимого летучего ингибитора гидратообразования, выведение из сепараторов жидкости, разделение ее на углеводородную и водную фазы, направление последней в поток газа, поступающий на одну из предыдущих ступеней сепарации, и подачу водной фазы, отводимой из сепаратора третьей ступени, в теплообменный аппарат первой ступени сепарации, отличающийся тем, что водную фазу, отводимую с первой ступени сепарации, подают в верхнюю, а отводимую с второй ступени сепарации, - в среднюю части массообменного десорбера-сепаратора, устанавливаемого на потоке газа после его компримирования, а водную фазу, выделяющуюся в десорбере-сепараторе, направляют на утилизацию.

Описание изобретения к патенту

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки и заводской обработки углеводородных газов.

Известен способ подготовки углеводородного газа к транспорту методом низкотемпературной сепарации (НТС) газа (см. Балыбердина И.Т. Физические методы переработки и использования газа. -М.: Недра, 1988, с. 153-154). Этот способ осуществляется путем охлаждения газа в теплообменниках и редуцирующих устройствах (дросселях, детандерах и/или эжекторах) с последующим отделением конденсирующихся фаз в сепараторах. При температуре в концевом низкотемпературном сепараторе ниже минус 25oC обеспечивается высокая степень извлечения жидких углеводородов (C5H12+высшие) из природного газа газоконденсатных месторождений (выше 95%). Для предупреждения гидратообразования в поток газа перед теплообменниками и расширительными устройствами подается ингибитор гидратообразования (обычно гликоль или метанол). Отработанный (насыщенный) ингибитор регенерируется методом ректификации на отдельной установке регенерации.

Трехступенчатая схема НТС реализована на Уренгойском газоконденсатном месторождении с использованием в качестве ингибитора гидратообразования метанола (см. Бурмистров А.Г., Истомин В.А., Сулейманов Р.С., Кульков А.Н. Расход метанола и пути его сокращения при промысловой обработке газа Уренгойского газоконденсатного месторождения. Подготовка, переработка и использование газа. -М.: ВНИИЭгазпром, 1986, N 1, с. 8-11).

Недостатком указанного способа является повышенный расход метанола и энергетические затраты на регенерацию отработанного метанола. Регенерация метанола методом ректификации неэффективна при низких концентрациях метанола в насыщенном растворе (ниже 10-15 мас.%). В связи с этим метанольные воды низких концентраций утилизируют методом сжигания или закачкой через специальные скважины в поглощающий пласт (горизонт). Поскольку метанол является сильно токсичным веществом, это отрицательно сказывается на экологии окружающей среды (воздушного бассейна и геологической среды).

Наиболее близким аналогом по сути к предлагаемому техническому решению является способ подготовки газоконденсатной смеси к транспорту трехступенчатой сепарацией (см. патент СССР N 1350447, кл. F 17 D 1/05, 1987), включающий ступенчатую сепарацию, охлаждение газового потока между ступенями сепарации, введение в поток газа водорастворимого летучего органического ингибитора гидратообразования, выведение из сепараторов жидкости, разделение ее на углеводородную и водную фазы и направление последней в поток газа, поступающий на одну из предыдущих ступеней сепарации.

Подача насыщенного летучего ингибитора (например, метанола) с последующих ступеней сепарации на предыдущую (т.е. в голову технологического процесса) сокращает расход концентрированного (исходного ингибитора) за счет его испарения из водной фазы в газовую, а в благоприятных случаях позволяет полностью отказаться от традиционной технологии регенерации насыщенных растворов ингибитора - метанола методом ректификации (его регенерация в схеме по патенту N 1350447, кл. F 17 D 1/05, 1987, фактически осуществляется непосредственно в самом технологическом процессе за счет использования энергии потока газа на первых ступенях сепарации).

Указанный способ подготовки газа показал работоспособность и высокую эффективность в начальный период эксплуатации газоконденсатного месторождения, когда газосборные сети (система внутрипромысловых газопроводов, связывающих кусты газоконденсатных скважин с установкой промысловой подготовки газа) функционировали практически в "безгидратном" режиме. Рассматриваемый способ-прототип реализован на одной из установок комплексной подготовки газа (УКПГ-5В) Уренгойского газоконденсатного месторождения с использованием метанола в качестве летучего и растворимого в сжатом природном газе ингибитора гидратообразования. Однако в процессе падения пластового давления и уменьшения производительности кустов скважин изменяется термодинамический режим работы системы внутрипромысловых трубопроводов (коллекторов и шлейфов, соединяющих кусты газоконденсатных скважин с установкой НТС). При этом постепенно снижается температура газа на устьях скважин, поэтому коллектора и шлейфы все в большей степени начинают работать в гидратном режиме. Концентрированный метанол начинают подавать на кусты скважин с целью ингибирования шлейфов и коллекторов. Это приводит к тому, что в жидкой водной фазе, отделяемой в сепараторе первой ступени установки НТС, концентрация отработанного метанола составляет 3-20 мас.% и более (концентрация метанола в отработанном водном растворе зависит от температуры в шлейфах на входе в установку подготовки газа, которая в свою очередь зависит от температуры воздуха). Тем самым снижается эффективность подготовки углеводородного газа к транспорту по способу-прототипу за счет ухудшения условий для испарения на первой ступени сепарации подаваемого с предыдущей ступени сепарации отработанного метанола (из-за понижения температуры и присутствия паров метанола в газе, поступающем на первую ступень сепарации). Кроме того, отделяемый в сепараторе первой ступени водный метанол относительно низкой концентрации уже не подлежит регенерации и закачивается в пласт через специальную скважину. При этом не только увеличивается норма расхода метанола, но и резко ухудшаются экологические показатели рассматриваемого технологического процесса.

Цель предлагаемого изобретения - снизить расход летучего ингибитора гидратообразования и улучшить экологические показатели на поздних стадиях эксплуатации газоконденсатного месторождения, работающего в условиях Крайнего Севера, при падении пластового давления и необходимости включения в технологическую схему НТС дожимной компрессорной станции (ДКС), устанавливаемой после сепаратора первой ступени установки НТС.

Этот способ не требует применения новых дорогостоящих реагентов, снижается расход обычно применяемого ингибитора гидратообразования - метанола и не требует традиционной регенерации отработанного метанола низких концентраций. Способ улучшает экологические показатели установки НТС.

Предлагаемый способ заключается в том, что в известном способе, включающем подачу газа с кустов скважин на трехступенчатую сепарацию, компримирование и охлаждение газового потока, введение в него водорастворимого летучего ингибитора гидратообразования (например, метанола), выведение из сепараторов жидкости, разделение ее на углеводородную и водную фазы, направление последней в поток газа, поступающий на одну из предыдущих ступеней сепарации, водную фазу, отводимую из сепаратора третьей ступени, подают в теплообменный аппарат первой ступени сепарации, водную фазу, отводимую из сепаратора второй ступени, смешивают с водной фазой, отводимой с первой ступени сепарации, и полученную смесь подают в массообменную часть десорбера-сепаратора, устанавливаемого на потоке газа после его компримирования, а водную фазу, выделяющуюся в десорбере-сепараторе направляют на утилизацию.

Кроме того, водную фазу, выделившуюся в сепараторе третьей ступени, делят на две части, одну из которых подают на кусты скважин, а вторую смешивают с водной фазой из сепаратора второй ступени и подают в массообменную часть десорбера-сепаратора.

Второй вариант предлагаемого способа заключается в том, что в известном способе, включающем подачу газа с кустов скважин на трехступенчатую сепарацию, компримирование и охлаждение газового потока, введение в него водорастворимого летучего ингибитора гидратообразования, выведение из сепараторов жидкости, разделение ее на углеводородную и водную фазы, направление последней в поток газа, поступающий на одну из предыдущих ступеней сепарации и подачу водной фазы, отводимой из сепаратора третьей ступени, в теплообменный аппарат первой ступени, водную фазу, отводимую с первой ступени сепарации, подают в верхнюю, а отводимую со второй ступени сепарации, - в среднюю части массообменного десорбера-сепаратора, устанавливаемого на потоке газа после его компримирования, а водную фазу, выделяющуюся в десорбере-сепараторе, направляют на утилизацию.

Данное техническое решение иллюстрируется чертежом, на котором представлена схема подготовки углеводородного газа газоконденсатной залежи к транспорту по предлагаемому изобретению.

Способ осуществляется следующим образом.

Пластовую продукцию с кустов газоконденсатных скважин по трубопроводу 1 подают в сепаратор первой ступени 2, где из него отделяют механические примеси, водную фазу (представляющую собой смесь конденсационной воды, пластовой минерализованной воды и отработанного ингибитора гидратообразования, например метанола) и жидкую углеводородную смесь (углеводородный конденсат). Отсепарированный газ поступает на компримирование на дожимную компрессорную станцию 3 и далее в десорбер-сепаратор 4. В десорбер-сепаратор 4 подают в противотоке с обрабатываемым углеводородным газом водный раствор метанола, при этом осуществляется отдувка метанола в поток газа, а стекающая водная фаза (представляющая собой воду с незначительными примесями летучего ингибитора гидратообразования) из низа десорбера направляется на утилизацию. Далее поток углеводородного газа направляют в аппарат воздушного охлаждения 5, теплообменник 6 и промежуточный сепаратор 7. В промежуточном сепараторе 7 отделяют водный раствор ингибитора и углеводородный конденсат. Водные фазы из входного сепаратора 2 и промежуточного сепаратора 7 объединяют и подают в верх десорбера сепаратора 4. Отсепарированный на промежуточной ступени сепарации газ направляют в теплообменник 8 и расширительное устройство 9 (в качестве расширительного устройства используют дроссель, турбодетандер или эжектор) и далее в концевой низкотемпературный сепаратор 10. В сепараторе 10 отделяют водную фазу (представляющую собой водный раствор ингибитора достаточно высоких концентраций) и углеводородный конденсат. Водную фазу из сепаратора 10 вводят в поток газа перед теплообменником 6, а потоки углеводородного конденсата со всех ступеней сепарации объединяют и направляют на дальнейшую обработку (на установки газофракционирования). Концентрированный летучий ингибитор гидратообразования, например метанол, вводят в поток газа перед теплообменником 8. Осушенный и очищенный от тяжелых углеводородов природный газ через рекуперативные теплообменники 8 и 6 поступает в магистральную газотранспортную систему для подачи потребителю.

Для оценки эффективности предложенного способа по сравнению с аналогом-прототипом были проведены исследования. На технологическую линию установки низкотемпературной сепарации (УКПГ-2В) подавали пластовую продукцию газоконденсатного месторождения в количестве 200 тыс.м3/час (текущий состав продукции газоконденсатных залежей Уренгойского газоконденсатного месторождения на четырех действующих установках приведен в табл. 1).

В качестве летучего ингибитора гидратообразования использовался концентрированный метанол (его концентрация составляла 93 мас.%).

Результаты проведенных исследований по обработке газоконденсатной смеси по прототипу (т. е. по изобретению N 1350447) и предлагаемому техническому решению приведены в табл. 1. В исследованных режимах давление и температура сырья на входе в сепаратор первой ступени были соответственно 10 МПа и 25oC. Давление газа в третьей (низкотемпературной) ступени сепарации в соответствии с требуемыми показателями по качеству подготовки газа и условиям магистрального транспорта газа поддерживалось на уровне 5,4-5,5 МПа, а температура минус 28 - минус 30oC. Температура газа на входе в ДКС составляла плюс 12oC, на выходе из ДКС - плюс 55oC, после охлаждения в аппарате воздушного охлаждения температура газа снижалась до 25oC.

В существующей технологии концентрированный метанол подавали на кусты скважин и перед теплообменником 8. В предлагаемой новой технологии концентрированный метанол подается перед теплообменником 8, причем на кусты скважин поступает в необходимом количестве водный раствор метанола, отбираемый из концевого низкотемпературного сепаратора 10.

Из полученных данных (см. табл. 2, где представлено сопоставление показателей прототипа и предлагаемого процессов, отнесенные к 1000 нормальных м3 газа) следует, что расход исходного концентрированного метанола по предлагаемой технологии снизился на ~ 25%. В то же время сброс метанола в сточные воды (направляемые на утилизацию) сократился в 16 раз. При этом концентрация метанола в сточных водах снизилась более чем на порядок и стала соответствовать действующим показателям ПДК на сбросные воды, закачиваемые в поглощающие горизонты.

Таким образом, по предлагаемой технологии достигаются не только более лучшие технико-экономические показатели, экономится ингибитор, но резко улучшаются экологические показатели. При этом отпадает необходимость в оплате штрафных санкций за закачку сточных вод, содержащих метанол.

Класс B01D53/00 Разделение газов или паров; извлечение паров летучих растворителей из газов; химическая или биологическая очистка отходящих газов, например выхлопных газов, дыма, копоти, дымовых газов, аэрозолей

фильтр для фильтрования вещества в виде частиц из выхлопных газов, выпускаемых из двигателя с принудительным зажиганием -  патент 2529532 (27.09.2014)
способ и устройство для определения доли адсорбированного вещества в адсорбирующем материале, применение устройства для определения или мониторинга степени насыщения адсорбирующего материала, а также применение устройства в качестве заменяемой вставки для поглощения влаги в технологическом приборе -  патент 2529237 (27.09.2014)
модульная установка очистки воздуха от газовых выбросов промышленных предприятий -  патент 2529218 (27.09.2014)
способ и установка для получения пиролизной жидкости -  патент 2528341 (10.09.2014)
способ непрерывного удаления сернистого водорода из потока газа -  патент 2527991 (10.09.2014)
установка подготовки углеводородного газа -  патент 2527922 (10.09.2014)
устройство подачи восстановителя с компенсационным элементом -  патент 2527817 (10.09.2014)
фильтр для поглощения твердых частиц из отработавших газов двигателя с воспламенением от сжатия -  патент 2527462 (27.08.2014)
регенерация очистительных слоев с помощью струйного компрессора в открытом контуре -  патент 2527452 (27.08.2014)
способ регенерации триэтиленгликоля -  патент 2527232 (27.08.2014)

Класс B01D53/26 сушка газов или паров 

способ и устройство для определения доли адсорбированного вещества в адсорбирующем материале, применение устройства для определения или мониторинга степени насыщения адсорбирующего материала, а также применение устройства в качестве заменяемой вставки для поглощения влаги в технологическом приборе -  патент 2529237 (27.09.2014)
установка подготовки углеводородного газа -  патент 2527922 (10.09.2014)
способ регенерации триэтиленгликоля -  патент 2527232 (27.08.2014)
адсорбент для осушки газов -  патент 2525178 (10.08.2014)
способ очистки природного газа и регенерации одного или большего числа адсорберов -  патент 2525126 (10.08.2014)
газожидкостный сепаратор -  патент 2519418 (10.06.2014)
устройство для компримирования и осушки газа -  патент 2516675 (20.05.2014)
устройство для осушки газа -  патент 2516636 (20.05.2014)
резервуар для осаждения и удаления влаги из сжатых газов -  патент 2514871 (10.05.2014)
устройство и способ для осушки газа -  патент 2506986 (20.02.2014)

Класс F25J3/00 Способы и устройства для разделения компонентов газовых смесей, включая использование сжижения или отверждения

способ выделения одноступенчатой ректификацией инертных газов из хвостовых газов и устройство для его осуществления -  патент 2528792 (20.09.2014)
способы выделения двухступенчатой ректификацией инертных газов из хвостовых газов и устройство для его осуществления -  патент 2528786 (20.09.2014)
установка для мембранного разделения неоно-гелиевой смеси -  патент 2528727 (20.09.2014)
способ разделения газа -  патент 2528689 (20.09.2014)
способ сжижения высоконапорного природного или низконапорного попутного нефтяного газов -  патент 2528460 (20.09.2014)
способ охлаждения влажного природного газа и устройство для его осуществления -  патент 2528209 (10.09.2014)
установка подготовки углеводородного газа -  патент 2527922 (10.09.2014)
установка подготовки и переработки газовых углеводородных смесей (варианты) -  патент 2525764 (20.08.2014)
устройство для охлаждения и сепарации компрессата -  патент 2525285 (10.08.2014)
способ компримирования газа -  патент 2524790 (10.08.2014)

Класс F25J3/02 ректификацией, те путем непрерывного обмена тепла и материала между потоком пара и потоком жидкости

способы выделения двухступенчатой ректификацией инертных газов из хвостовых газов и устройство для его осуществления -  патент 2528786 (20.09.2014)
способ удаления азота -  патент 2524312 (27.07.2014)
способ получения из многокомпонентного раствора криптоноксеноновой смеси и растворителя особой чистоты и устройство его осуществления -  патент 2520216 (20.06.2014)
способ удаления азота -  патент 2514804 (10.05.2014)
многоступенчатый циклонный сепаратор для текучей среды -  патент 2509272 (10.03.2014)
способ дегидратации газа, содержащего co2 -  патент 2505763 (27.01.2014)
улучшенное удаление азота в установке для получения сжиженного природного газа -  патент 2502026 (20.12.2013)
производство очищенного углеводородного газа из газового потока, содержащего углеводороды и кислые загрязнители -  патент 2498175 (10.11.2013)
способ сжижения газа с фракционированием при высоком давлении -  патент 2495342 (10.10.2013)
способ и устройство для отделения одного или более c2+углеводородов из углеводородного потока со смешанными фазами -  патент 2493510 (20.09.2013)

Класс F17D1/05 предупреждение замерзания

противообледенительное покрытие и его применение -  патент 2493478 (20.09.2013)
система снабжения сжиженным углеводородным газом -  патент 2476759 (27.02.2013)
установка для декомпрессии газа, газоредукторный пункт с подобной установкой и способ декомпрессии газа -  патент 2443935 (27.02.2012)
способ транспортировки текучих сред, тепловой насос и рабочая текучая среда для теплового насоса -  патент 2417338 (27.04.2011)
устройство для беспламенного подогрева промысловых трубопроводов -  патент 2406916 (20.12.2010)
автоматический редуцирующий пункт -  патент 2347973 (27.02.2009)
устройство, предотвращающее замерзание системы отопления здания -  патент 2326290 (10.06.2008)
способ предотвращения гидратообразования в природном газе и устройство для его осуществления -  патент 2251644 (10.05.2005)
способ охлаждения углеводородного газа при подготовке к транспорту -  патент 2199053 (20.02.2003)
способ подготовки природного газа -  патент 2161526 (10.01.2001)

Класс E21B43/00 Способы или устройства для добычи нефти, газа, воды, растворимых или плавких веществ или полезных ископаемых в виде шлама из буровых скважин

способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья -  патент 2529689 (27.09.2014)
способ разработки углеводородных месторождений арктического шельфа и технические решения для реализации способа -  патент 2529683 (27.09.2014)
системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой -  патент 2529537 (27.09.2014)
устройство для регулирования расхода флюида -  патент 2529316 (27.09.2014)
скважинная установка -  патент 2529310 (27.09.2014)
полупогружная буровая платформа катамаранного типа -  патент 2529098 (27.09.2014)
способ воздействия на застойную зону интервалов пластов гарипова и установка для его реализации -  патент 2529072 (27.09.2014)
устройство для избирательной имплозионной обработки продуктивного пласта -  патент 2529063 (27.09.2014)
способ термошахтной разработки месторождения высоковязкой нефти по одногоризонтной системе -  патент 2529039 (27.09.2014)
способ добычи газа из газовых гидратов -  патент 2528806 (20.09.2014)
Наверх