станция технического контроля сигналов спутниковых линий связи
Классы МПК: | H04B7/204 с многостанционным доступом H04B17/00 Контроль; испытание |
Автор(ы): | Гончаров А.Ф., Косогор А.Л., Савушкин В.Т., Стороженко Д.П. |
Патентообладатель(и): | Ростовский научно-исследовательский институт радиосвязи |
Приоритеты: |
подача заявки:
1996-05-21 публикация патента:
20.11.2001 |
Изобретение относится к радиотехнике и может быть использовано для технического контроля сигналов существующих и вновь создаваемых систем связи со сложной структурой сигналов. Достигаемым техническим результатом изобретения является расширение функциональных возможностей станции. Станция содержит последовательно соединенные антенну с системой наведения, малошумящий усилитель, преобразователь частоты, радиоприемное устройство, блок оптимальной фильтрации, резветвитель, первый коммутатор, когерентный базовый демодулятор сигналов с многостанционным доступом на основе частотного разделения, второй коммутатор, накопительный буфер, персональную электронно-вычислительную машину со специальным программным обеспечением, а также преобразователь сигнала с многостанционным доступом на основе кодового разделения в фазоманипулированный сигнал на основе частотного разделения и последовательно соединенные когерентный фазовый демодулятор сигналов с многостанционным доступом на основе временного разделения и кадровый синхронизатор с выделителем произвольного пакета, выходы которого подключены ко вторым входам второго коммутатора, при этом второй и третий выходы разветвителя подключены соответственно ко второму входу преобразователя и второму входу когерентного базового демодулятора сигналов с многостанционным доступом на основе временного разделения. 1 ил.
Рисунок 1
Формула изобретения
Станция технического контроля сигналов спутниковых линий связи, содержащая последовательно соединенные антенну с системой наведения, малошумящий усилитель, преобразователь частоты, радиоприемное устройство, блок оптимальной фильтрации и когерентный фазовый демодулятор сигналов с многостанционным доступом на основе частотного разделения сигналов, отличающаяся тем, что в нее введены последовательно соединенные разветвитель, блок корреляционной обработки сигналов с многостанционным доступом на основе кодового разделения сигналов, первый коммутатор, выход которого подключен ко входу когерентного фазового демодулятора сигналов с многостанционным доступом на основе частотного разделения сигналов, а также последовательно соединенные когерентный фазовый демодулятор сигналов с многостанционным доступом на основе временного разделения сигналов, вход которого подключен ко второму выходу разветвителя, кадровый синхронизатор пакетных сигналов с выделителем произвольного пакета, второй коммутатор, накопительный буфер, персональная электронно-вычислительная машина, ко вторым входам которой подключен блок программной обработки, при этом выход блока оптимальной фильтрации радиоприемного устройства с коррекцией амплитудно-частотной характеристики и группового времени запаздывания подключен ко входу разветвителя, третий выход которого подключен ко второму входу первого коммутатора, а второй вход второго коммутатора подключен к выходу когерентного фазового демодулятора сигналов с многостанционным доступом на основе частотного разделения сигналов.Описание изобретения к патенту
Изобретение относится к области радиотехники и может быть использовано для контроля параметров сигналов как функционирующих, так и вновь создаваемых спутниковых линий связи. В процессе эксплуатации и создания новых линий связи приходится решать ряд сложных технических задач, таких как:определение зон доступности при работе как с глобальными, так и узконаправленными лучами;
отношение сигнал/шум в разных зонах допустимости;
вероятность искажения символов в зонах допустимости;
выбор вида доступа к ретранслятору;
выбор типа помехоустойчивого кодирования/декодирования;
выбор типа скремблирующей последовательности;
выбор типа перемежения/деперемежения;
выбор типа модуляции и т.п. В настоящее время большинство систем связи перешло на цифровые методы передачи информации. При этом в зависимости от назначения системы связи используются различные преобразования сигналов на передающей стороне. Для доступа к ретранслятору и формирования групповых сигналов используются:
многостанционный доступ на основе частотного разделения - МДЧР (75% линий связи);
многостанционный доступ на основе кодового разделения - МДКР (5% линий связи);
многостанционный доступ на основе временного разделения - МДВР (20% линий связи). Для обеспечения высокой достоверности передачи информации используется помехоустойчивое кодирование/декодирование с различными структурами кодов. Для устойчивой работы символьных синхронизаторов в паузах между сигналами на передающей стороне сигнал скремблируется (суммируется с псевдослучайной последовательностью). Для исключения групповых ошибок сигнал перемежается/деперемежается [1, с. 162]. Для передачи определенного объема информации в заданной полосе частот используются фазовые виды модуляции различной кратности (2ФМ, 4ФМ, 4ФМС, 8ФМ, 16ФИ, КАМ). Как видим, сигналы спутниковых линий связи имеют довольно сложную структуру. В настоящее время зоны доступности, отношение сигнал/шум, вероятность искажения символов рассчитываются теоретически и затем корректируются при вводе линий связи в эксплуатацию, т.е. функции станции технического контроля выполняет приемная часть аппаратуры линий связи. Как правило, при создании передающей аппаратуры спутниковых линий связи проблем не возникает. Основные проблемы возникают при создании приемной аппаратуры:
выбор места расположения приемных станций;
выбор диаметра зеркала антенн приемных станций;
определение отношения сигнал/шум на входе демодулятора приемной станции;
определение вероятности искажения символов;
определение искажения сигнала на трассе распространения: передающая станция - ретранслятор - приемная станция. В связи с использованием в линиях связи трех вышеперечисленных видов доступа (МДЧР, МДКР и МДВР) для определения параметров сигналов в точке приема необходимо иметь соответственно три типа приемных станций контроля. Каждая из этих станций содержит в своем составе антенную систему, малошумящий усилитель (МШУ), преобразователь частоты, радиоприемное устройство (РПУ), блок оптимальной фильтрации, демодулирующие устройства, устройства синхронизации и обработки групповых цифровых потоков, персональную электронно-вычислительную машину (ПЭВМ) с программным обеспечением (ПО). В результате при построении приемных станций для каждого вида доступа создается избыточность дорогостоящей контрольной аппаратуры. Таким образом, напрашивается вопрос о создании универсальной станции технического контроля сигналов спутниковых линий связи. Предпосылками для постановки такой цели являются следующие факторы:
в линиях связи с МДЧР, МДКР и МДВР передаются однотипные сигналы: телефон (ТЛФ), телеграф (ТЛГ), фототелеграф (ФТЛГ), передача данных (ПД), которые формируются в групповые цифровые потоки того или иного уровня иерархического уплотнения;
групповые потоки во всех видах доступа подвергаются помехоустойчивому кодированию и скремблированию;
высокая стоимость антенных установок, МШУ и РПУ. В качестве прототипа взята типовая станция технического контроля с многостанционным доступом на основе частотного разделения (МДЧР), содержащая последовательно соединенные антенну с системой наведения, малошумящий усилитель, преобразователь частоты, радиоприемное устройство, блок оптимизации фильтрации с коррекцией амплитудно-частотной характеристики (АЧХ) и группового времени запаздывания (ГВЗ), когерентный фазовый демодулятор с блоком символьной синхронизации, блок обработки групповых сигналов с помехоустойчивым декодером, дескремблером, каналовыделяющими устройствами и канальными демодуляторами. Недостатком такой станции технического контроля является возможность контроля сигналов только линий связи с МДЧР. Целью изобретения является расширение функциональных возможностей. Для достижения поставленной цели предлагается станция технического контроля, содержащая последовательно соединенные приемную антенну с системой наведения, малошумящий усилитель, радиоприемное устройство, блок оптимальной фильтрации с коррекцией амплитудно-частотной характеристики (АЧХ) и группового времени запаздывания (ГВЗ), а также когерентный фазовый демодулятор сигналов с МДЧР. Согласно изобретению в нее введены последовательно соединенные разветвитель, блок корреляционной обработки, обеспечивающий преобразование сигналов с МДКР в фазовоманипулированный сигнал, и первый коммутатор, выход которого подключен ко входу когерентного фазового демодулятора с МДЧР, а также последовательно соединенные когерентный фазовый демодулятор сигналов с МДВР, подключенный ко второму выходу разветвителя, кадровый синхронизатор пакетных сигналов с выделением произвольного пакета, второй коммутатор, накопительный буфер, персональная электронно-вычислительная машина (ПЭВМ), ко вторым входам которой подключен блок программной обработки, при этом выход блока оптимальной фильтрации с коррекцией АЧХ и ГВЗ подключен ко входу разветвителя, третий выход которого подключен соответственно ко входам когерентного фазового демодулятора сигналов МДВР и первого коммутатора, а второй вход второго коммутатора подключен к выходу когерентного фазового демодулятора сигналов с МДЧР. Сочетание отличительных признаков и свойства предлагаемой станции из литературы не известны, поэтому она соответствует критериям новизны и изобретательского уровня. На чертеже приведена функциональная схема предлагаемой станции технического контроля сигналов спутниковых линий связи. Станция содержит последовательно соединенные антенну 1 с системой наведения 2, малошумящий усилитель 3, преобразователь частоты 4, радиоприемное устройство 5, блок оптимальной фильтрации с коррекцией АЧХ и ГВЗ 6, разветвитель 7, коммутатор 8, когерентный фазовый демодулятор сигналов с МДЧР 9, коммутатор 10, накопительный буфер 11, ПЭВМ 12, блок программной обработки 13, последовательно соединенные когерентный фазовый демодулятор сигналов с МДВР 14, кадровый синхронизатор пакетных сигналов с выделителем одного произвольного пакета 15, выход которого подключен ко второму входу коммутатора 10, а также блок корреляционной обработки сигналов с МДКР 16, выход которого подключен ко второму входу коммутатора 8, а второй и третий выходы разветвителя 7 подключены соответственно ко входу демодуляции 14 и блока 16. Станция работает следующим образом. Антенна 1 с помощью системы наведения 2 наводится на интересующий объект. Принятый сигнал усиливается в МШУ 3 и поступает на преобразователь частоты 4 и далее через РПУ 5 - на блок оптимальной фильтрации 6, в котором осуществляется корректировка АЧХ и ГВЗ. Обработанный таким образом сигнал поступает на разветвитель 7, в котором распределяется по радиоприемным трактам сигналов с МДЧР 8, 9, 10, 11, 12, 13; с МДВР 14, 15, 10, 11, 12, 13 и с МДКР 16, 8, 9, 10, 11, 12, 13. 1. При работе с сигналами с МДЧР сигнал с разветвителя 7 через первый коммутатор 8 поступает на когерентный фазовый демодулятор сигналов с МДЧР, в котором сигнал преобразуется в групповой цифровой поток информации. Далее через второй коммутатор 10 цифровой поток информации поступает в накопительный буфер 11, а затем на ПЭВМ 12, в которой с помощью блока программной обработки 13 осуществляется определение интересующих параметров принятых сигналов. 2. При работе с сигналами с МДКР от разветвителя 7 сигнал поступает в блок 16, в котором методом корреляционной обработки сигнал с МДКР преобразуется в обычный фазовоманипулированный сигнал с МДЧР. Далее, через коммутатор 8, преобразованный сигнал поступает в тракт МДЧР, где обрабатывается аналогично сигналам с МДЧР. 3. При работе с сигналами с МДВР сигнал с разветвителя 7 поступает на когерентный фазовый демодулятор сигналов с МДВР 14, где преобразуется в групповой пакетный цифровой поток. В блоке 15 осуществляется кадровая синхронизация и выделение информации одного из пакетов. В результате этих преобразований сигнал трансформируется в стандартный цифровой поток с МДЧР. Этот сигнал через коммутатор 10 поступает в тракт МДЧР и обрабатывается в блоках 11, 12, 13. Предложенное построение станции опробовано на реальных сигналах и подтвердило возможность использования ее для определения и контроля параметров сигналов спутниковых линий связи. В рамках ОКР "Соловейко-2" в РНИИРС разработаны, изготовлены и прошли Государственные испытания широкодиапазонные, перестраиваемые устройства предлагаемой станции:
изделие Р300С-Н1 - демодулятор МДЧР,
изделие Р300С-П2 - демодулятор МДВР,
изделие Р300С-П5 - кадровый синхронизатор,
изделие Р300С-1К - блок корреляционной обработки сигналов с МДКР,
изделие Р300-Н5 - накопительный буфер,
изделие Р300С-ПОА - программное обеспечение по определению параметров сигналов. В результате использования предложения получен следующий технико-экономический выигрыш:
- станция позволяет контролировать технические параметры с видами доступа МДЧР, МДВР и МДКР за счет использования накопительного буфера, ПЭВМ и программного обеспечения;
- оптимизирован состав станции за счет приведения сигналов с различным видом доступа и сигналом с МДЧР;
- для приема и обработки сигналов всех видов доступа (МДЧР, МДКР и МДВР) используются одна антенная система и МШУ, которые перенастраиваются в процессе работы на тот или иной сигнал, один преобразователь частоты, РПУ и блок оптимальной фильтрации;
- в тракте обработки сигналов с МДВР используются наиболее дорогостоящие блоки тракта МДЧР 11, 12 и 13, а в тракте обработки сигналов с МДКР используются практически все блоки тракта МДЧР 9, 10, 11, 12 и 13;
- станция фактически выполняет функции трех приемных станций спутниковых линий связи и может быть использована для определения любой приемной станции спутниковой связи;
- обеспечена возможность контроля сигналов в широком диапазоне изменения их параметров за счет создания широкодиапазонных перепрограммируемых входящих в станцию устройств. Литература
1. В. Л. Банкет, В.М.Дорофеев. Цифровые методы в спутниковой связи. М.: Радио-связь, 1988 г.
Класс H04B7/204 с многостанционным доступом
Класс H04B17/00 Контроль; испытание