сталь для магистральных нефте- и газопроводов
Классы МПК: | C22C38/58 с более 1,5 % марганца по массе C22C38/50 с титаном или цирконием |
Автор(ы): | Степанов А.А., Ламухин А.М., Зинченко С.Д., Дьяконова В.С., Голованов А.В., Гуркин М.А., Рослякова Н.Е., Чикалов С.Г., Комаров А.И., Седых А.М., Степанцов Э.В., Роньжин А.И., Шишов А.А., Тетюева Т.В., Зикеев В.Н., Клыпин Б.А. |
Патентообладатель(и): | Открытое акционерное общество "Северсталь", Закрытое акционерное общество "Объединенная металлургическая компания" |
Приоритеты: |
подача заявки:
2001-05-14 публикация патента:
27.02.2002 |
Изобретение относится к металлургии, а именно к низколегированным сталям, стойким против водородного растрескивания, используемым для изготовления сварных нефте- и газопроводных труб, пригодных к эксплуатации в условиях Крайнего Севера. Предложена сталь для магистральных нефте- и газопроводов, содержащая компоненты в следующем соотношении, мас.%: углерод - 0,04 - 0,12; марганец - 0,7 - 1,7; кремний - 0,2 - 0,9; ванадий - 0,03 - 0,12; ниобий - 0,02 - 0,08; алюминий - 0,02 - 0,06; азот - 0,004 - 0,010; кальций - 0,001 - 0,02; хром - не более 0,3; никель - не более 0,3; медь - не более 0,3; титан - не более 0,03; сера - не более 0,008; фосфор - не более 0,015; молибден - 0,001-0,15; железо - остальное. Техническим результатом изобретения является получение стали с повышенной вязкостью, стойкой против водородного растрескивания и технологичной. 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
Сталь для магистральных нефте- и газопроводов, содержащая углерод, марганец, кремний, ванадий, ниобий, алюминий, азот, кальций, хром, никель, медь, титан, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит молибден при следующем соотношении компонентов, мас. %:Углерод - 0,04-0,12
Марганец - 0,7-1,7
Кремний - 0,2-0,9
Ванадий - 0,03-0,12
Ниобий - 0,02-0,08
Алюминий - 0,02-0,06
Азот - 0,004-0,010
Кальций - 0,001-0,02
Хром - 0,3
Никель - 0,3
Медь - 0,3
Титан - 0,03
Сера - 0,008
Фосфор - 0,015
Молибден - 0,001-0,15
Железо - Остальное
Описание изобретения к патенту
Изобретение относится к металлургии, конкретно к низколегированным сталям, стойким против водородного растрескивания, используемым для изготовления сварных нефте- и газопроводов, пригодных к эксплуатации в условиях Крайнего Севера. Низколегированная сталь для магистральных нефте- и газопроводов, работающих в условиях Крайнего Севера, должна сочетать высокую прочность, свариваемость, коррозионную стойкость и стойкость к водородному растрескиванию в агрессивных сульфидосодержащих средах (табл.1). Известна низколегированная сталь для магистральных нефте- и газопроводов [1], имеющая следующий химический состав, мас.%:Углерод - 0,20 - 0,40
Кремний - 0,10 - 0,40
Марганец - 0,50 - 1,2
Фосфор - 0,010
Сера - 0,003
Хром - 0,080 - 1,50
Молибден - 0,10 - 0,60
Титан - 0,005 - 0,03
Ниобий - 0,005 - 0,10
Алюминий - 0,01 - 0,06
Кальций - 0,001 - 0,005
Азот - 0,0010 - 0,0090
Железо - Остальное
Сталь известного состава имеет низкие вязкостные свойства при температурах испытания -60oС и недостаточную стойкость против водородного растрескивания. Известна также низколегированная сталь [2] следующего химического состава, мас.%:
Углерод - 0,05 - 0,15
Марганец - 1,2 - 2,0
Кремний - 0,15 - 0,60
Ванадий - 0,03 - 0,15
Ниобий - 0,005 - 0,10
Алюминий - 0,006 - 0,06
Азот - 0,002 - 0,015
Титан - 0,005 - 0,10
Хром - 0,01 - 0,30
Никель - 0,01 - 0,30
Медь - 0,01 - 0,30
РЗМ - 0,002 - 0,050
Сера - 0,01
Фосфор - 0,02
Железо - Остальное
Данная сталь также характеризуется недостаточной вязкостью при отрицательных температурах и имеет низкую стойкость в средах, содержащих сульфидные соединения. Все это не позволяет использовать известную сталь для магистральных нефте- и газопроводов, работающих в условиях Крайнего Севера. Наиболее близкой по своему химическому составу и свойствам к предлагаемой стали является сталь [3], принятая в качестве прототипа и содержащая, мас.%:
Углерод - 0,03 - 0,11
Марганец - 0,90 - 1,80
Кремний - 0,06 - 0,60
Хром - 0,005 - 0,30
Никель - 0,005 - 0,30
Ванадий - 0,02 - 0,12
Ниобий - 0,03 - 0,10
Титан - 0,010 - 0,040
Алюминий - 0,010 - 0,055
Кальций - 0,001 - 0,005
Сера - 0,0005 - 0,008
Фосфор - 0,0005 - 0,010
Азот - 0,001 - 0,012
Медь - 0,005 - 0,25
Сурьма - 0,0001 - 0,005
Олово - 0,0001 - 0,007
Мышьяк - 0,0001 - 0,008
Железо - Остальное
причем суммарное содержание фосфора Р, сурьмы Sb, мышьяка As и олова Sn должно удовлетворять соотношению: 2P+Sn+Sb+As<0,035. Техническая задача, решаемая изобретением, состоит в повышении вязкостных свойств, стойкости против водородного растрескивания и технологичности производства стали. Для решения поставленной технической задачи сталь, содержащая углерод, марганец, кремний, ванадий, ниобий, алюминий, азот, кальций, хром, никель, медь, титан, серу, фосфор и железо, дополнительно содержит молибден при следующем соотношении компонентов, мас.%:
Углерод - 0,04 - 0,12
Марганец - 0,7 - 1,7
Кремний - 0,2 - 0,9
Ванадий - 0,03 - 0,12
Ниобий - 0,02 - 0,08
Алюминий - 0,02 - 0,06
Азот - 0,004 - 0,010
Кальций - 0,001 - 0,020
Хром - 0,3
Никель - 0,3
Медь - 0,30
Титан - 0,03
Сера - 0,008
Фосфор - 0,015
Молибден - 0,001 - 0,15
Железо - Остальное
Углерод в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,04% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,12% ухудшает пластичность и вязкость стали. Марганец введен для раскисления и повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 0,7% снижается прочность стали и вязкость при отрицательных температурах. Повышение концентрации марганца сверх 1,7% приводит к образованию бейнитной структуры в середине по толщине проката, что снижает хладостойкость и ухудшает сопротивление против водородного растрескивания. Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства, упрочняет ферритную фазу. При содержании кремния менее 0,2% прочность стали недостаточна. Увеличение содержания кремния более 0,9% приводит к возрастанию количества силикатных неметаллических включений, охрупчивает сталь, ухудшает ее пластичность. Ванадий и ниобий образуют с углеродом карбиды VC, NbC, а с азотом - нитриды VN, NbN. Мелкие нитриды и карбонитриды ванадия и ниобия располагаются по границам зерен и субзерен, тормозят движение дислокаций и тем самым упрочняют сталь. При содержании ванадия менее 0,03% и ниобия менее 0,02% их влияние недостаточно велико, свойства стали ниже допустимого уровня. Увеличение концентрации ванадия более 0,12% или ниобия более 0,08% вызывает дисперсионное твердение и приводит к охрупчиванию границ зерен. Это ухудшает свойства стали. Алюминий является раскисляющим и модифицирующим элементом. При содержании алюминия менее 0,02% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,06% приводит к ухудшению свариваемости. Азот является карбонитридообразующим элементом, упрочняющим сталь. Поэтому при снижении концентрации азота менее 0,004% прочностные свойства стали ниже допустимого уровня. Повышение концентрации азота сверх 0,010% приводит к снижению вязкостных свойств при отрицательных температурах, что недопустимо. Кальций является модифицирующим элементом. Кроме того, он связывает серу в глобулярные сульфиды, повышая вязкостные свойства стали. При концентрации кальция менее 0,001% его действие проявляется слабо. Увеличение концентрации кальция более 0,02% увеличивает количество и размеры неметаллических включений, ухудшает стойкость против водородного растрескивания. Хром, никель и медь способствуют повышению прочностных свойств, но при содержании каждого из этих элементов более 0,3% имеет место снижение ударной вязкости стали при отрицательных температурах. Титан является сильным карбидообразующим элементом, упрочняющим сталь. Однако при сварке титан полностью выгорает, поэтому его количество в стали не должно превышать 0,03%. Сера и фосфор являются вредными примесями, снижающими пластические и вязкостные свойства. При концентрации серы не более 0,008% и фосфора не более 0,015% их вредное действие проявляется слабо и не приводит к заметному снижению механических свойств стали. В то же время более глубокое удаление серы и фосфора удорожает сталь, делает ее производство нетехнологичным. Молибден в количестве 0,001-0,15% обеспечивает повышение стойкости данной стали против водородного растрескивания, повышает вязкость при отрицательных температурах. При концентрации молибдена менее 0,001% сталь не выдерживает испытания на стойкость против водородного растрескивания и в горячекатаном состоянии полосы склонны к охрупчиванию. Увеличение концентрации молибдена сверх 0,15% не приводит к дальнейшему улучшению ее механических свойств, а лишь увеличивает затраты на легирующие материалы. В таблице 2 приведены химические составы сталей с различным содержанием легирующих элементов и примесей, а в таблице 3 - свойства этих же сталей. Как следует из табл. 2 и 3, сталь предложенного состава (составы 2-4) обладает более высокими вязкостными свойствами при отрицательных температурах, а также повышенной стойкостью против водородного растрескивания. За счет исключения необходимости проведения глубокой десульфурации и дефосфорации повышается технологичность ее производства. В случаях запредельных значений концентрации легирующих элементов и примесей (составы 1 и 5), а также при использовании стали известного химического состава (состав 6), принятого в качестве прототипа, вязкостные свойства стали ухудшаются. Стали этих составов не выдерживают испытания на стойкость против водородного растрескивания и нетехнологичны в производстве.
Класс C22C38/58 с более 1,5 % марганца по массе
Класс C22C38/50 с титаном или цирконием