способ получения эпоксидных соединений
Классы МПК: | C07D301/04 воздухом или молекулярным кислородом C07D301/08 в газовой фазе B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого |
Автор(ы): | Сироткина Е.Е., Кудряшов С.В., Рябов А.Ю. |
Патентообладатель(и): | Институт химии нефти СО РАН |
Приоритеты: |
подача заявки:
2000-06-19 публикация патента:
20.03.2002 |
Изобретение относится к способу получения эпоксидных соединений, которые используются в качестве промежуточных продуктов в синтезе органических соединений. Эпоксидные соединения получают из олефиновых углеводородов окислением их в реакторе с барьерным разрядом, процесс ведут в избытке парафиновых углеводородов, при этом продукты реакции выводят из реакционной зоны при помощи углеводородной пленки, стекающей по стенкам реактора. Технический результат - повышение селективности в процессе эпоксидирования. 1 табл.
Рисунок 1
Формула изобретения
Способ получения эпоксидных соединений из олефиновых углеводородов окислением их в реакторе с барьерным разрядом, отличающийся тем, что процесс ведут в избытке парафиновых углеводородов, при этом продукты реакции выводят из реакционной зоны при помощи углеводородной пленки, стекающей по стенкам реактора.Описание изобретения к патенту
Изобретение относится к способу получения эпоксидных соединений, которые используются в качестве промежуточных продуктов в синтезе органических соединений. Известен способ получения эпоксидов из олефинов и перекиси водорода с использованием катализатора - титансодержащих молекулярных сит [пат. США 5684170, МКИ С 07 D 301/12]. Существует также каталитический способ получения эпоксидов из олефинов и перекиси водорода с использованием катализатора на основе силикатов титана или ванадия со структурой цеолита [Пат. ФРГ 19623611, МКИ С 07 D 301/12]. Общими недостатками данных процессов являются невысокая скорость реакции, необходимость применения катализаторов, органических растворителей и перекиси водорода в качестве эпоксидирующего агента. Наиболее близким к предлагаемому способу является процесс окисления циклогексена кислородом в реакторе с барьерным электрическим разрядом [Окисление углеводородов в реакторе с барьерным разрядом. / С.В.Кудряшов, Г. С.Щеголева, Е.Е.Сироткина, А.Ю.Рябов // Химия Высоких Энергий. - 2000 г., т. 34, 2, с. 154-157]. Селективность образования эпоксициклогексана составляет ~ 62 мас. % Использование барьерного разряда в процессе эпоксидирования исключает применение катализаторов, перекисей, температуры и давления. Основным недостатком данного способа является относительно невысокая селективность процесса. Задача изобретения - повышение селективности в процессе эпоксидирования олефиновых углеводородов в реакторе с барьерным электрическим разрядом. Технический результат достигается тем, что в процессе эпоксидирования, под воздействием барьерного разряда на парогазовую смесь олефина с кислородом, в реактор добавляют избыточное количество парафинового углеводорода, который конденсируется на стенках реактора, образуя жидкую пленку углеводорода, стекающую по стенкам реактора, и выводит из разрядной зоны реактора продукты реакции. Согласно изобретению способ может быть применен к жидким олефиновым углеводородам С5-С10. Способ иллюстрируется следующими примерами. Пример 1. Окисление циклогексена проводят с использованием проточного газоразрядного реактора коаксиальной конструкции, выполненного из стекла пирекс по типу озонатора Сименса. Поток кислорода из баллона по трубопроводу через систему регулировочных вентилей барбатируется через емкость с циклогексеном. Далее концентрация циклогексена соответствует равновесной при данной температуре емкости. Кислород с парами циклогексена подается в смеситель, где смешивается с избыточным количеством паров октана. Пары октана получают в испарителе. Дозирование октана в испаритель производят при помощи перистальтического насоса. Из смесителя парогазовую смесь олефина, октана и кислорода направляют в реактор. В верхней части реактора происходит конденсация паров, и образовавшийся конденсат стекает в виде пленки вниз по стенкам реактора. Концентрация не сконденсировавшихся паров октана в кислороде соответствует равновесной при данной температуре стенок реактора, которые термостатируются при помощи термостата. Конденсат и растворенные в нем продукты реакции собирают в приемнике. Система электродов состоит из коаксиально расположенных внешнего заземленного электрода и внутреннего потенциального. Величина зазора между диэлектрическими барьерами составляет 1,1 мм. Газоразрядный реактор имеет рабочую зону длиной 12 см и объем 10,52 см3. Возбуждение разряда осуществляется высоковольтными импульсами напряжения, подаваемыми от генератора. Объемная скорость прокачки кислорода и октана через реактор составляет 3,6 лч-1 и 0,03 лч-1 соответственно; время контакта парогазовой смеси с зоной разряда соответствует 10,5 с; температура емкости с циклогексеном равняется 20oС. Амплитуда питающего напряжения 12 кВ; частота повторений импульсов 400 Гц; длительность импульса питающего напряжения по основанию ~320 мкс; удельная энергия разряда равняется 2,54 Втчл-1; селективность образования эпоксициклогексана составила ~72,2 мас.%. Пример 2. Циклогексен эпоксидируют в условиях, аналогичных описанным в примере 1, в качестве парафинового углеводорода используют декан. Селективность образования эпоксициклогексана в процессе эпоксидирования достигает ~ 82,6 мас.%. Пример 3. Процесс эпоксидирования циклогексена протекает в условиях, аналогичных описанным в примере 1, парафиновый углеводород - гептан. Селективность образования эпоксициклогексана составила ~61,0 мас.%. Пример 4. Эпоксидирование циклогексена в реакторе с барьерным разрядом проводят по примеру 1, температура стенок реактора составила 11oС. Селективность образования эпоксициклогексана в реакции достигает ~82,3 мас.%. Пример 5. Гексен-1 эпоксидируют в условиях, аналогичных описанным в примере 1, для образования жидкой пленки парафинового углеводорода в реакторе применяют октан, селективность образования 1,2-эпоксигексана составляет ~ 54,3 мас.%. Пример 6. Процесс эпоксидирования гексена-1 в реакторе с барьерным разрядом проводят в условиях, аналогичных описанным в примере 5, реакция происходит при температуре стенок реактора 11oС. В процессе достигается селективность образования 1,2-эпоксигексана ~60,9 мас.%. Пример 7. Эпоксидирование гексена-1 происходит в условиях, аналогичных приведенным в прототипе. Газоразрядный реактор коаксиальной конструкции выполнен из стекла пирекс по типу озонатора Сименса. Поток кислорода по трубопроводу через систему регулировочных вентилей направляют в смеситель. Насыщение кислорода парами гексена-1 осуществляют путем смешения их в смесителе. Дозирование гексена-1 в испаритель производят при помощи перистальтического насоса. Из смесителя парогазовую смесь направляют в реактор. В верхней части реактора происходит конденсация паров гексена-1. Образовавшийся конденсат стекает в виде пленки вниз по стенкам реактора. Концентрация несконденсировавшегося гексена-1 в кислороде соответствует равновесной при данной температуре стенок реактора, которые термостатируются при помощи термостата. Конденсат и растворенные в нем продукты реакции собирают в приемнике. Газоразрядный реактор имеет рабочую зону длиной 12 см и объем 10,52 см3. Система электродов состоит из коаксиально расположенных внешнего заземленного электрода и внутреннего потенциального. Величина зазора между диэлектрическими барьерами составляет 1,1 мм. Возбуждение разряда осуществляется высоковольтными импульсами напряжения, подаваемыми от генератора. Объемная скорость прокачки кислорода и гексена-1 через реактор составляет 3,6 лч-1 и 0,03 лч-1 соответственно; время контакта парогазовой смеси с зоной разряда соответствует 10,5 с; температура стенок реактора равняется 20oС. Амплитуда питающего напряжения 12 кВ; частота повторения импульсов 400 Гц; длительность импульса питающего напряжения по основанию ~320 мкс; удельная энергия разряда равняется 2,54 Втчл-1. Селективность образования 1,2-эпоксигексана в процессе эпоксидирования гексена-1 в реакторе с барьерным электрическим разрядом составила ~47,9 мас.%. Как видно из примеров и таблицы, процесс эпоксидирования олефиновых углеводородов в реакторе с барьерным электрическим разрядом протекает с высокой селективностью и согласно изобретению может быть применен к жидким олефиновым углеводородам С5-С10.Класс C07D301/04 воздухом или молекулярным кислородом
Класс C07D301/08 в газовой фазе
Класс B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого