сополимер стирола и полигетероарилена для полимерных материалов

Классы МПК:C08G73/00 Высокомолекулярные соединения, получаемые реакциями образования связи, содержащей азот в сочетании с атомами кислорода или углерода или без них, в основной цепи макромолекулы, не отнесенные к группам  12/00
C08F291/12 азотсодержащими макромолекулами
Автор(ы):, , ,
Патентообладатель(и):Институт элементоорганических соединений им. А.Н. Несмеянова РАН
Приоритеты:
подача заявки:
2000-07-04
публикация патента:

Описывается привитой сополимер стирола и полигетероарилена общей формулы (1), где n = 100-150. Указанное соединение может быть использовано в качестве полимерных материалов, обладающих высокими физико-механическими и термическими свойствами, а именно предел прочности на разрыв составляет от 38 до 58 МПа, модуль упругости при растяжении составляет от 0,98сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366103 до 2,4сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366103 МПа при относительном удлинении от 1,8 до 3,6%; температура стеклования от 95 до 130oС. Полимер указанной выше формулы получают путем радикально инициированной полимеризации стирола в присутствии ароматического полигетероарилена при постепенном повышении температуры от 20 до 100-120oС. В качестве инициаторов использовали циклогексилпероксидикарбонат (ЦПК) и динитрилазодиизомасляной кислоты (ДАК). В качестве полигетероарилена используют полимеры, такие как полиимид (ПИ), полиамид (ПА) и полиарилат (ПАР), содержащие кардовые и гексафторпропилиденовые группы, растворимые в стироле и в других органических растворителях (например, в циклогексаноне, N-метил-пирролидоне). Строение полученных полимеров подтверждено данными элементного анализа, ИК-спектроскопии и гельпроникающей хроматографии. 2 табл.

сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366

сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366
Рисунок 1, Рисунок 2

Формула изобретения

Сополимер стирола и полигетероарилена общей формулы

сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366

сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366

n=100-150.

Описание изобретения к патенту

Изобретение относится к химии полимеров и представляет собой новый привитой сополимер стирола и полигетероарилена общей формулы:

сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366

где

сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366

n=100-150.

Указанное соединение наиболее эффективно может быть использовано в качестве полимерных материалов, обладающих высокими физико-механическими и термическими свойствами.

Указанное соединение, его свойства и способ получения в литературе не описаны.

Известен сополимер стирола и винилхлорида. Прочность при растяжении составляет 33,5 МПа; относительное удлинение 95%; теплостойкость - 80oС (Николаев А.Ф. "Синтетические полимеры и пластические массы на их основе ". М., Л. Изд. "Химия" 1964. с. 143).

Известен сополимер стирола, содержащий 5 % акрилонитрила, 15% бутадиена и 80% стирола (АБС-1 пластик). Напряжение при растяжении составляет 40 МПа, модуль упругости - 1,8х1,03 МПа, относительное удлинение при разрыве - 10%, теплостойкость - 104oС (Технология пластических масс. /Под ред. В.В.Коршака. М. Изд-во "Химия ". 1985, с.476).

Основным недостатком этих полимеров являются невысокие прочностные и термические характеристики.

Задачей настоящего изобретения является получение нового полимерного соединения - привитого сополимера стирола и полигетероарилена (ПГА), обладающего повышенными термическими и механическими свойствами, которое может быть использовано в качестве полимерных материалов.

Поставленная задача достигается тем, что заявляемый полимер указанной выше формулы получают путем радикально инициированной полимеризации стирола в присутствии ароматического полигетероарилена при постепенном повышении температуры от 20 до 100-120oС. В качестве инициаторов использовали циклогексилпероксидикарбонат (ЦПК) и динитрилазобисизомасляной кислоты (ДАК). В качестве полигетероарилена используют полимеры, такие как полиимид, полиамид и полиарилат, содержащие кардовые и гексафторпропилиденовые группы, растворимые в стироле и в других органических растворителях (например, в циклогексаноне, N-метил-2-пирролидоне).

Строение полученных полимеров было подтверждено данными элементного анализа, ИК-спектроскопии и гель-проникающей хроматографии. На ИК-спектрах полиимида и сополимеров стирола и полиимида наблюдается полоса поглощения при 715 см-1, отвечающая бензольному кольцу, полоса поглощения при 1374 см-1, отвечающая валентным колебаниям атома азота имидного кольца, и полосы поглощения при 1716, 1735, 1784 см-1, отвечающие валентным колебаниям СО-имидного цикла. На гель-хроматограмме образцов, полученных полимеризацией стирола в присутствии 4, 10 и 20 мас.% различных ПГА, имеется лишь один пик, отличный от пиков для стирола и ПГА.

Полимеры 1-9 получены по общей методике.

В коническую колбу на 50 мл загружают полигетероарилен и стирол, массовое соотношение которых варьируют в пределах 4-20 мас.% - 96-80 мас.% соответственно. В случае нерастворимости полигетероарилена вводят циклогексанон (инертный разбавитель) в количестве 35 мас.%. К раствору полигетероарилена со стиролом добавляют 0,1 мас.% смеси ЦПК и ДАК, взятых в соотношении 1:1, как инициатора. Полученный реакционный раствор помещают в стеклянные ампулы, которые запаивают в вакууме. Полимеризацию проводят при медленном, постепенном повышении температуры от 20 до 100-120oС. Полученные в результате реакции полимеры переосаждают, промывают и сушат в вакууме при 60oС.

Загрузки исходных полигетероариленов, стирола, циклогексанона и инициаторов представлены в таблице 1.

Физико-механические и термические свойства полученных сополимеров представлены в таблице 2 (порядковые номера соответствуют таблице 1).

Из данных, представленных в таблице, видно, что заявляемые полимеры обладают высокими физико-механическими и термическими характеристиками, а именно предел прочности на разрыв составляет от 38 до 58 МПа (превосходит аналог 1 ~ в 1,5 раза), модуль упругости при растяжении составляет от 0,98сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366103 до 2,4сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366103 МПа (превосходит аналог 2 на 0,6сополимер стирола и полигетероарилена для полимерных   материалов, патент № 2181366103 МПа) при относительном удлинении от 1,8 до 3,6% (в 50 раз ниже, чем у аналога 1, и в 2-5 раз ниже, чем у аналога 2); температура стеклования от 95 до 130oС (превосходит аналог 1 на 15-50 oС и аналог 2 на 26oС).

Класс C08G73/00 Высокомолекулярные соединения, получаемые реакциями образования связи, содержащей азот в сочетании с атомами кислорода или углерода или без них, в основной цепи макромолекулы, не отнесенные к группам  12/00

полимерные системы доставки действующих веществ -  патент 2523714 (20.07.2014)
способ получения полимерных ионных соединений имидазолия -  патент 2515989 (20.05.2014)
непрерывной способ получения реактивного полимера -  патент 2513146 (20.04.2014)
полимерное связующее и препрег на его основе -  патент 2510408 (27.03.2014)
электрохимический способ синтеза полианилина, легированного металлом -  патент 2505558 (27.01.2014)
способ удаления полифенилполиаминов, связанных мостиковыми метиленовыми группами, из водного потока -  патент 2503654 (10.01.2014)
способ получения высокоочищенного дезинфицирующего средства -  патент 2500667 (10.12.2013)
способ получения электрореологических суспензий -  патент 2499030 (20.11.2013)
применение алкоксилированных полиалканоламинов для деэмульгирования эмульсий типа "масло в воде" -  патент 2498841 (20.11.2013)
амфифильные водорастворимые алкоксилированные полиалкиленимины, имеющие внутренний полиэтиленоксидный блок и наружный полипропиленоксидный блок -  патент 2495918 (20.10.2013)

Класс C08F291/12 азотсодержащими макромолекулами

Наверх