способ и устройство для определения информации об амплитуде и фазе электромагнитной волны
Классы МПК: | H01L27/148 формирователи сигналов изображения на приборах с зарядовой связью |
Патентообладатель(и): | ШВАРТЕ Рудольф (DE) |
Приоритеты: |
подача заявки:
1997-09-05 публикация патента:
10.05.2002 |
Изобретение относится к способу и соответствующему устройству для определения информации об амплитуде и/или фазе электромагнитной волны. Для того чтобы достигнуть пространственного разрешения по глубине данных изображения, полученных с помощью такого способа, способ согласно изобретению содержит следующие этапы. Электромагнитную волну направляют на поверхность элемента фотонного смешения, содержащего по меньшей мере один пиксель. Пиксель имеет по меньшей мере два светочувствительных модуляционных световентиля Gam и Gbm и связанные накопительные вентили Ga и Gb. Напряжения Uam(t) и Ubm(t) модуляции световентиля, которые имеют конфигурацию в виде Uam(t)=Uo+Um(t) и Ubm(t)= Uo - Um(t), прикладывают к модуляционным световентилям Gam и Gbm. Прямое напряжение, величина которого является по меньшей мере такой же, как и величина полного напряжения Uo и амплитуда напряжения Um(t) модуляции, прикладывают к накопительным вентилям Ga и Gb. Носители заряда, полученные в области пространственного заряда модуляционных световентилей Gam и Gbm, подвергают с помощью падающей электромагнитной волны в виде функции полярности напряжений Uam(t) и Ubm(t) модуляции световентилей действию градиента потенциалов поля дрейфа и дрейфа в соответствующем накопительном вентиле Ga или Gb. Отводят заряды qa и qb, которые продрейфовали к накопительным вентилям Ga и Gb соответственно. Соответствующий элемент фотонного смешения имеет по меньшей мере один пиксель, содержащий светочувствительные модуляционные световентили (Сam, Gbm) и накопительные вентили (Ga, Gb). Они связаны с модуляционными световентилями и распределяются на части относительно падающей электромагнитной волны. Множество элементов фотонного смешения можно сгруппировать для того, чтобы сформировать массив. Технический результат изобретения - повышение эффективности процесса определения информации о фазе и амплитуде электромагнитной волны. 4 с. и 30 з.п. ф-лы, 14 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14
Формула изобретения
1. Способ определения информации об амплитуде и/или фазе электромагнитной волны, в котором излучаемая электромагнитная волна падает на поверхность элемента фотонного смешения, имеющего по меньшей мере один пиксель, причем пиксель имеет по меньшей мере два светочувствительных модуляционных фотовентиля Gam и Gbm и связанные накопительные вентили Ga и Gb, к модуляционным фотовентилям Gam и Gbm прикладывают напряжения Uam(t) и Ubm(t) модуляционных фотовентилей, которые имеют вид Uam(t)= U0+Um(t) и Ubm(t)= U0-Um(t), причем к накопительным вентилям Ga и Gb прикладывают постоянное напряжение, величина которого изменяется по меньшей мере настолько, насколько изменяется величина суммы U0 и амплитуда напряжения Um(t) модуляции, носители заряда, которые образуются в зоне пространственного заряда модуляционных фотовентилей Gam и Gbm с помощью падающей электромагнитной волны, подвергают действию градиента потенциалов поля дрейфа в зависимости от полярности напряжений Uam(t) и Ubm(t) модуляционных фотовентилей и дрейфа в соответствующем накопительном вентиле Ga и Gb и удаляют заряды qa и qb, которые образуются в результате дрейфа к соответствующим накопительным вентилям Ga и Gb. 2. Способ по п. 1, в котором электромагнитную волну, промодулированную по интенсивности, излучают посредством передатчика, электромагнитная волна, отраженная от объекта, падает на поверхность элемента фотонного смещения, напряжения Uam(t) и Ubm(t) модуляционных фотовентилей находятся при фиксированном соотношении фаз с фазой электромагнитной волны, излученной посредством передатчика, и произведенные носители заряда дополнительно подвергают действию градиента потенциалов поля дрейфа в зависимости от фазы противофазных напряжений am(t) и Ubm(t) модуляционных фотовентилей. 3. Способ по п. 2, в котором для двух различных сдвигов d


фазу




определяют фазу



Описание изобретения к патенту
Изобретение относится к способу и устройству для определения информации об амплитуде и фазе электромагнитной волны. В настоящем изобретении термин "фаза" употребляется в общем для обозначения времени фазового перехода и времени прохождения, который также используется в отношении соответствующей формы рассматриваемого сигнала. В описании вместо термина "электромагнитная волна" употребляется термин "световая волна". Однако, это не означает ограничение только спектральным диапазоном видимых электромагнитных волн, а используется только с целью упрощения. В электронной измерительной технике и технике связи для измерения частотных составляющих, в терминах амплитуды и фазы широкополосных и высокочастотных сигналов, часто используются фазовые детекторы, которые позволяют произвести умножение или смешение неизвестного сигнала с синусоидальным колебанием и определить с помощью интегрирования или фильтрации нижних частот устойчивую компоненту, которая получается при наличии составляющей сигнала той же самой частоты. Эта процедура позволяет получить корреляционную функцию неизвестного сигнала с сигналом смешения для данного, регулируемого и относительного положения фазы. За счет изменения частоты смешения (качание частоты), неизвестный сигнал можно разбить на спектральные составляющие. Устойчивую компоненту, изменяющуюся амплитуду и фазу неизвестной частотной составляющей той же самой частоты можно определить с помощью по меньшей мере трех положений фазы. В настоящее время исследование соответствующих оптических сигналов, которые в измерительной технике и в технике связи приобретают все более важное значение, проводится с помощью широкополосных фотодетекторов, а также с помощью электрооптических преобразователей с последующим установлением значения при электронном измерении, как описано выше для электрических сигналов. Из-за высокого уровня затрат эти способы и соответствующие измерительные устройства являются на практике обычно только одно- или двухканальными. Однако, в случае оптических сигналов часто необходимо одновременно рассматривать очень много параллельных каналов с высокочастотными компонентами, в частности, полный ряд изображения. Кроме спектральных свойств модуляции двухмерных световых волн, предметом особого интереса является быстрое измерение огибающей модуляции в пространстве и времени. Кроме того, существует необходимость в выполнении быстрого и точного наблюдения за трехмерными объектами, например, с помощью оптических локационных процессов, которые требуют сверхскоростных детекторов, работающих в субнаносекундном диапазоне, в результате распространения эхо-сигналов со скоростью света. В то же самое время, их необходимо использовать в виде детекторной матрицы, если необходимо избежать затрат по времени в операции сканирования активных или пассивных ярких трехмерных объектов. Такая трехмерная камера предложена в патенте DE 44 39 298 A1, который используется в настоящем изобретении в качестве базовой отправной точки. На фиг.10 изображена трехмерная камера на основе времени прохождения эхо-сигналов или на процессе времени фазового перехода. ВЧ-модулированная световая волна 101, которая излучается из передатчика 107 и 103 модулированного света и отражается от трехмерного объекта 100, содержит всю информацию о глубине в задержке относительно фазового фронта. Если падающую световую волну еще раз промодулировать в приемной апертуре 102 с помощью двухмерного оптического смесителя 104 на той же самой частоте, которая соответствует преобразованному на нулевую частоту биений смешению или процессу демодуляции, то результатом является устойчивая высокочастотная интерферограмма. Эту ВЧ-интерферограмму можно зарегистрировать с помощью известной ПЗС-камеры 105 и подвергнуть ее дальнейшей обработке с помощью устройства 106 обработки изображения. Интегрирование устойчивой компоненты смешанного произведения при помощи ПЗС-фотоэлектрического заряда соответствует образованию корреляционной функции из двух сигналов смешения. Расстояние, связанное с фазовыми задержками, зависящее от времени прохождения эхо-сигнала и амплитуды, можно вычислить пиксель-образным способом из трех или нескольких интерферограмм посредством разности фаз частоты смешения и демодуляции, например 0o, 120o и 240o или 0o, 90o, 180o и 270o и, таким образом можно восстановить 3-мерное глубокое изображение. Двухмерный оптический смеситель 103 или 104, который также упоминается как пространственный модулятор света или ПМС, содержит в этом случае, например, ячейку Поккельса, которая имеет ряд серьезных недостатков, которые описаны в литературе. Другие варианты осуществления представлены в виде ЖКИ-окон, которые являются по общему признанию недорогими, но у которых ширина полосы приблизительно в 1000 раз меньше необходимой. Использование, так называемой, микроканальной пластины, которая используется в усилителях изображения, является достаточно дорогостоящим. Усиление можно модулировать с помощью модуляции ускоряющего напряжения, которое подается в микроканалы и которое влияет на вторичную электронную эмиссию в микроканалах. Кроме того, известный уровень техники позволяет использовать двухмерные корреляторы, основанные на ПЗС-фотодетекторной матрице. "Синхронное обнаружение света с помощью синхронной двухмерной ПЗС-матрицы", Шпириг, Зейц и др. , ИИЭР Журнал квантовой электроники, т. 31, 9, сентябрь, 1995, с. 1705 - 1708 ("The Lock- In CCD-Two-Dimensional Synchronous Detection of Light" by Spirig, Seitz et. al. , published in IEEE Journal of Quantum Electronics, Vol. 31, No. 9, September 1995, pages 1705-1708). В этой работе, фотопиксель опрашивают с помощью четырех вентилей с переносом заряда для того, чтобы установить фазу световой волны, промодулированной синусоидальным сигналом. Для каждого периода синусоиды с помощью четырех вентилей прохождения получают соответствующий эквидистантный образец, посредством чего можно легко вычислить фазу. Эта процедура является слишком медленной для рассматриваемых проблем, поскольку гармонический световой сигнал, во-первых, является интегральным за период сканирования, который значительно ограничивает ширину полосы. Только потом этот необходимый процесс смешения выполняют с сохраненным зарядом, который выбирают в качестве образца сканирования. Поэтому задача настоящего изобретения заключается в том, чтобы обеспечить способ и устройство для определения информации об амплитуде и/или фазе, и таким образом, огибающей световой волны, которые позволяют реализовать более простую, более широкополосную и менее дорогостоящую концепцию коррелятора и произвести быстрое наблюдение за трехмерным объектом с помощью предварительно определенного освещения. Вышеупомянутую задачу решают с помощью способа по п.1 и с помощью элемента фотонного смешения по п.14, с помощью размещения элемента смешения по п.20 и с помощью устройства по п.23. Принцип, согласно изобретению, основан на дрейфе, который получают с помощью напряжения модуляционных фотовентилей и выделения отрицательных носителей заряда, генерируемых фотоспособом с помощью световой волны в материале под по меньшей мере двумя смежными светочувствительными модуляционными фотовентилями. В этом случае, этот дрейф носителей зарядов под действием напряжений Uam(t) и Ubm(t) модуляционных фотовентилей, прикладываемых к модуляционным фотовентилям, которые зависят от соответствующей полярности или рассматриваемой фазы, то есть к накопительным вентилям, которые смещены предпочтительно на два постоянных напряжения Ua и Ub. Напряжения Uam(t) и Ubm(t) модуляционных фотовентилей предпочтительно взаимодополняюще прикладывают и они предпочтительно состоят из напряжения U0 и напряжения модуляции +Um(t) и -Um(t), соответственно, наложенных противофазно. Вместе два модуляционных фотовентиля предпочтительно формируют квадратную поверхность. Пиксель только с двумя модуляционными фотовентилями можно также рассматривать как двойной пиксель. Этот принцип, согласно изобретению, предполагает фотоэлектрический квантовый эффект, вызванный посредством электромагнитных волн. Тем не менее, на протяжении всего описания будут рассматриваться световые волны, что не должно быть расценено как ограничение. Фактический процесс смешения или умножения находится как функция напряжения модуляции или дрейфа фазы от носителей фото-сгенерированных зарядов на правой или на левой стороне модуляционных фотовентилей ("размах заряда"). В этом отношении разность заряда между носителями заряда, который выделяется этим способом и собирается под накопительным вентилем и передается в электронную систему считывания, принимая во внимание интегрирование в заданное время, представляет собой измерение корреляционной функции огибающей падающего модулированного светового сигнала и напряжение Um(t) модуляции. В то же самое время сумма зарядов тех носителей зарядов, которые продрейфовали к накопительным вентилям и перешли на остатки, на которые не повлияло положение размаха заряда, и используется в качестве подходящей интенсивности пикселя или в качестве полутона пикселя. Для того чтобы определять относительную фазу или задержку времени падающей световой волны, необходимо, как описано выше, выполнить три измерения в отношении трех параметров компонент постоянного напряжения и компонент переменного напряжения и относительной фазы. Поэтому, возможно предположить конфигурацию пикселя элемента фотонного смешения с тремя светочувствительными модуляционным фотовентилями, которые действуют после с помощью напряжений модуляционных фотовентилей, которые содержат три различных сдвига фазы относительно световой волны, излученной с помощью передатчика. Однако, необходимо определить фазу принимаемого сигнала в каждом пикселе элемента фотонного смешения из полученных в результате корреляционных амплитуд, используя четыре различных измерения в отношении четырех различных фаз сигнала смесителя. Это выполняют для дополнительного определения, посредством которого можно значительно уменьшить уровень шума. Противофазное размещение напряжений модуляционных фотовентилей в двух модуляционных фотовентилях на пиксель предусматривает, что напряжения модуляционных фотовентилей, полученные из этих измерений, проводят в то же самое время. Поэтому, например, в случае ВЧ-модуляции, достаточно выполнить два измерения, которые соответственно проводят через 90o при 0o/180o и также при разности фаз 90o/270o в отношении напряжений Uam(t) и Ubm(t) модуляционных фотовентилей, соответственно, по отношению к фазе излученного светового пучка для того, чтобы получить необходимые значения четырех различных измерений. Поэтому, конкретная предпочтительная компоновка является такой, в которой элемент фотонного смешения, соответственно, формирующий пиксель, содержит четыре симметрично размещенных модуляционных фотовентиля, в котором каждые два соответствующие взаимно и противоположно расположенные модуляционные фотозатворы действуют в соответствии с противофазными или сдвинутыми на 180o по фазе напряжениями модуляционных фотовентилей, в котором два измерения, которые соответственно проводят через 90o и которые были описаны ранее в отношении двойного пикселя с разностью фаз 0o/180o, а также 90o/270o напряжений модуляционных фотовентилей, в этом случае выполняют одновременно. Такой пиксель можно также рассматривать как учетверенный пиксель. Кроме того, для калибровки сдвига фаз напряжений Uam(t) и Ubm(t) модуляционных фотовентилей, представляется предпочтительно возможным направить в дальнейшем часть световых волн, излученных передатчиком, в качестве опорного сигнала непосредственно на по меньшей мере один из множества пикселей компоновки множества элементов фотонного смешения. Информацию об амплитуде и фазе, полученную из этого непосредственно освещенного пикселя, можно затем использовать для операции калибровки или можно использовать для корректировки сдвига фаз на заранее определенное значение. С другой стороны, в случае независимо возбужденной, неизвестной модуляции падающей световой волны, излученной с помощью активного объекта, посредством по меньшей мере одного элемента фотонного смешения, можно измерить световую волну с известным высоким уровнем разрешения синхронного усилителя. Для этой цели элемент фотонного смешения совместно с настраиваемым модуляционным генератором, который находится в месте передатчика, формирует цепь фазовой автоподстройки. Кроме того, при синхронном усилении используется цепь фазовой автоподстройки, например, для ВЧ-модуляции, а также для цифровой модуляции используется цепь автоподстройки задержки. Для наблюдения пассивных объектов, модуляцию излученного светового пучка и соответствующую модуляцию напряжений Uam(t) и Ubm(t) модуляционных фотовентилей, соответственно, можно выполнить различными способами. Прежде всего, можно выполнить непрерывную ВЧ-модуляцию, в случае которой разности зарядов и суммы зарядов считываются с повторением на интервалах, которые могут как положительная обратная связь влиять на интенсивность пикселя, для оценки информации об амплитуде и фазе световой волны. Преимущественной процедурой является периодический режим работы с ВЧ-модуляцией импульсной по форме и освещением, например, для того чтобы в каждом случае кратковременно превысить интерференционное фоновое освещение. В этом случае только фотосгенерированные заряды, соответственно, интегрируют за время ВЧ-импульса и затем оценивают. При определении, в частности, информации о времени прохождения или фазе отраженных световых волн для того, чтобы увеличить уровень разрешения времени прохождения или фазы, можно использовать процесс сжатия ВЧ-импульса, известный из радиолокационный техники, с узкими корреляционными функциями, например, процедуру линейной частотной модуляции (ЧМ). В этом случае, оба сигнала модуляции отдельного элемента фотонного смешения, а также световая волна передатчика, которая излучается с заданным фазовым соотношением, и, таким образом, световая волна, отраженная с найденным фазовым соотношением, соответственно, модулируется с линейной ЧМ. Благодаря линейной ЧМ подходящим способом, введение регулируемой задержки между напряжением модуляционных фотовентилей элемента фотонного смешения и света, излученного передатчиком, обеспечивает разрешение многочисленных целей или подавление помеховых сигналов, многократно отраженных от освещенной сцены. Псевдошумовая модуляция (ПШ-модуляция), которая описывается далее, используется как дополнительная форма модуляции, и как основная полосовая-ПШ- и также ВЧ-ПШ-модуляция. Процедура отбора образцов с помощью операций образец-и-хранение в случае повторяющихся световых сигналов является особым случаем смешения и корреляции с дельта-импульсами. Элемент фотонного смешения, согласно изобретению, можно преимущественно использовать в этом случае также и для других применений импульсной модуляции. Рассмотренные режимы модуляции являются по существу известными из предшествующего уровня техники. Заряды, которые продрейфовали к накопительным вентилям, могут теперь быть предметом дальнейшей обработки различными способами. С одной стороны, элемент фотонного смешения можно выполнить с использованием ПЗС-технологии, в случае которой заряды собираются или суммируются под накопительными вентилями и затем передаются известным способом на ПЗС-считывающую схему, например, в трехфазовом сдвиговом цикле, и считываются с помощью p- или n-диффузии. С другой стороны, элемент фотонного смешения можно выполнить с использованием КМОП-технологии в виде активного элемента пикселя с пиксель-специфическим электронным считыванием и системой предварительной обработки сигнала. В этом случае, на практике схему считывания, которая известна в ПЗС-технике, выполняют на обеих соответствующих сторонах непосредственно в модуляционном фотовентиле. Накопительные вентили предпочтительно, в виде блокировочных p-n-диодов с малыми емкостями и передают поступающие фотогенерированные заряды, предпочтительно, непосредственно с помощью электродов Ga и Gb в систему электронного считывания пикселей и предварительной обработки сигнала, для хранения и обработки. Поэтому в последнем случае два компонента заряда размаха заряда непрерывно считываются и могут храниться практически реакционно-свободным способом, например, с помощью усилителя заряда, на соответствующем расположенном далее подсоединенном конденсаторе. Предшествующий уровень техники предусматривает, чтобы перед каждой новой операцией измерения входящие в состав схемы заряженные конденсаторы разряжались посредством электронных разрядных переключателей, и необходимо, чтобы не соответствующие установленным значениям напряжения, измеренные в условиях разряда, использовались для корректировки фактических значений измерения. Это использование пиксель-образной реакционно-свободной процедуры считывания имеет преимущество в том, что всю динамику элемента фотонного смешения и вместе с тем способ измерения можно значительно улучшить по сравнению с существующим использованием ПЗС-технологии. Дополнительным предпочтительным путем можно непосредственно вычислить информацию об амплитуде и фазе в электронной системе считывания пикселей и предварительной обработки сигнала, предпочтительно в виде интегральной схемы, расположенной на одном кристалле. Такое специфическое применение оптоэлектронного кристалла (СПОК) или такого датчика активного пикселя (ДАП) увеличивает скорость измерения и позволяет проводить пиксель-образную предварительную обработку фаз и/или амплитуд. Важным преимуществом настоящего изобретения является то, что модуляция производится одновременно с выработкой и разделением заряда. Другими словами, обнаружение и смешение происходит в то же самое время и без дополнительных мешающих и ограничивающих по полосе частот промежуточных стадий. Следовательно, ошибки времени дрейфа, которые имеют место в предшествующем уровне техники, устранены, при этом модуляция заряда и операции интегрирования, которые выделяются в терминах времени и пространства из операции обнаружения, обязательно происходят и не будут подавляться. Дополнительное преимущество настоящего изобретения заключается в высокой граничной частоте элемента фотонного смешения. Граничная частота заряда, который переносится с помощью противофазного напряжения модуляции, сравнивается в терминах максимальной длины дрейфа или расстояния прохождения, то есть суммарной длины модуляционных фотовентилей, с граничной частотой соответствующих МОП-транзисторов, и таким образом, достигает гигагерцового диапазона. Кроме того, причиняющие затруднения синфазные сигналы подавляются вследствие разделения антисимметричных носителей заряда и различного образования. Каждый помеховый сигнал, который не коррелирует с модуляционным сигналом, например, фоновое освещение, подавляется при различении зарядов, и это приводит в результате к высокому отношению сигнал-шум. Более того, существует только небольшой дрейф во времени из-за комбинации обнаружения, смешения и интегрирования носителей заряда и различного образования на том же самом кристалле. Кроме того, комбинация практически всех функций измерения становится возможной внутри одиночной полупроводниковой структуры. По сравнению с предшествующим уровнем техники, раскрытым в патенте DE 44 39 298 A1 с использованием ячеек Поккельса в качестве модуляторов, необходимы только низкие модуляционные напряжения в диапазоне 1 В вместо 1000 В. Кроме того, двухмерное размещение элементов фотонного смешения, согласно изобретению, гарантирует большую апертуру на стороне приемника. Кроме того, когерентный или поляризованный свет не требуется для определения информации об амплитуде и/или фазе. Соответственно, можно использовать дополнительные специфические свойства падающих световых волн с помощью размещения далее избирательных фильтров, например, в отношении поляризации и длины волны света. Кроме того, это размещение позволяет получить высокий уровень чувствительности и высокое отношение сигнал/шум благодаря устранению электронных смесителей и широкополосных усилителей фотодетектора, которые используются в соответствии с предшествующим уровнем техники. Спектральная оптическая ширина полосы световых волн, которые будут наблюдать, определяется с помощью спектральной фоточувствительности материала, который используется в зоне пространственного заряда в фотовентилях, то есть, например, в случае кремния, приблизительный диапазон длины волны составляет 0,3 - 1,1 мкм, в случае InGaAs приблизительно 0,8 - 1,6 мкм и в случае InSb приблизительно 1 - 5,5 мкм. Элементы фотонного смешения можно расположить в любом нулевом, одно- или трехмерном размещении и, таким образом, получать широкий спектр используемых конфигураций. В этом отношении, несколько 100000 элементов фотонного смешения могут работать параллельно с шириной полосы модуляции, например 10-1000 МГц, например так, чтобы камеру-вспышку трехмерной сцены можно выполнить чрезвычайно быстро, с определением информации о расстоянии в каждом пикселе. Изображение фазы



- цифровая трехмерная фотографическая камера,
- цифровая трехмерная видеокамера,
- контроль опасных зон,
- техника безопасности и "интеллектуальные здания",
- обнаружение жителей и идентификация в транспортных средствах, "интеллектуальный авиабагаж",
- электронное трехмерное зеркало заднего вида,
- распознавание ситуации движения транспорта в дорожном движении,
- автономная навигация транспортного средства,
- некогерентный волоконный гироскоп и доплеровское измерение скорости,
- управление автономными транспортными средствами,
- промышленные уборочные роботы,
- персональная идентификация, аутентификация и проверка санкционированного доступа,
- идентификация объектов, например, транспортных средств,
- контроль продукции, тестирование материалов, тестирование 100% качества,
- электронный "трехмерный глаз" для руки робота, прочный, маленький, полностью твердотельный,
- измерение скорости транспортного средства и длина пробега, обнаружение условий дороги, заторы на дорогах,
- сигнализация свободного пути, контроль контактного провода на железных дорогах,
- медицинская техника, эндоскопия,
- МДРК (CDMA)-техника для оптической связи в свободном пространстве или по линии,
- интерактивная трехмерная связь, например, в области мультисредств,
- трехмерное измерение движущихся объектов с помощью линейки элементов фотосмешения. В этом отношении необходимо подчеркнуть следующие преимущества элементов фотосмешения настоящего изобретения (в дальнейшем для выражения "Устройство фотонного смесителя" используется аббревиатура "УФС"):
1. УФС объединяет: обнаружение, противофазное смешение и интегрирование в очень маленьком пространстве (1/100 - 1/1000 мм2) (электрооптическая корреляция). 2. 2-х кратное/4-х кратное-УФС: замена 2-х или 4-х дорогих широкополосных усилителей с высоким динамическим диапазоном и постоянной величиной группового времени прохождения и 2-х и 4-х электронных смесителей, соответственно. 3. Устраняется высокий уровень электронной чувствительности с перекрестным наложением между передатчиком и приемником. 4. Высокий уровень интегрируемости приблизительно со 100000 параллельными электрооптическими модуляторами. 5. УФС-трехмерная фотографическая или видеокамера полностью интегральная, маленькая, легкая, прочная и гибко приспосабливаемая с помощью оптический увеличительной системы для светового передатчика и приемника. Объемы измерений для естественных поверхностей, расстояния приблизительно от 20 см до 50 м с угловой апертурой приблизительно от 5o до 50o. 6. Сверхбыстрая запись трехмерных изображений в диапазоне 10 - 1000 Гц. Чувствительность и отношение сигнал/шум соответствуют современным ПЗС- и КМОП-камерам. 7. Ожидаемая глубина разрешения составляет приблизительно 0,5-50 мм в зависимости от соответствующего времени измерения, интенсивности освещения, предполагаемая оптика и интервал благодаря оптимальному опорному сигналу. 8. Максимальная ширина полосы с соответствующим размером пикселя вплоть до гигагерцового диапазона. 9. Напряжения модуляции в диапазоне менее чем 1 В. 10. Не требуется когерентный, поляризованный или узкополосный свет, и спектральный диапазон зависит от светочувствительного материала (например, в случае InSb вплоть до 5,5 мкм). 11. Одновременная запись трехмерного изображения глубины и двухмерное изображение значения серого цвета, благодаря слиянию данных, предоставляет оптимизированную оценку трехмерного изображения значения серого цвета (или трехмерного цветного изображения). 12. Схема считывания, вследствие зависимого от интенсивности изменения во времени Т, интегрирования, позволяет увеличить динамический диапазон приблизительно на 8 бит (коэффициент 256). Сущность изобретения иллюстрируется ссылкой на сопроводительные чертежи, на которых:
фиг. 1 - а) вид в поперечном сечении пикселя первого варианта осуществления элемента фотонного смешения, в соответствии с изобретением, с использованием ПЗС-технологии и b) - f) распределение потенциалов Us(t) для различных фаз или периодов двух комплементарных напряжений Uam(t) и Ubm(t) модуляционных фотовентилей;
фиг. 2 - блок-схема линейно скомпонованных пикселей, использующих ПЗС-технологию и содержащих часть приспособления считывания межлинейного прохождения;
фиг.3 - схема распределения интенсивности падающего света и картина распределения потенциалов напряжений Usep(t), Ua(t), Uam(t), Ubm(t) и Ub(t) в случае ВЧ-модуляции;
фиг. 4 - схема характеристики смешения и результата корреляции элемента фотонного смешения в виде усредненных токов носителей фотосгенерированных зарядов

относительной фазы или сдвига по времени прохождения



фиг. 5 - схема для ПШ-модуляции, иллюстрирующая а) сигнал модуляции, b) характеристики смешения и результата корреляции для двойного пикселя
(только


фиг. 6 - а) вид в поперечном сечении пикселя второго варианта осуществления с использованием ПЗС-технологии элемента фотонного смешения, в соответствии с изобретением, со средним модуляционным фотовентилем Gо, а также как распределения потенциалов под модуляционными фотовентилями и накопительными вентилями, b) для положительного и с) для отрицательного модуляционного напряжения Um(t);
фиг. 7 - а) вид в поперечном сечении пикселя третьего варианта осуществления элемента фотонного смешения, в соответствии с изобретением, и b) - f) распределение потенциалов для разных фаз, аналогично фиг.1;
фиг. 8 - общий вид, показывающий пиксель четвертого варианта осуществления элемента фотонного смешения, в соответствии с изобретением, с четырьмя модуляционными фотовентилями и четырьмя накопительными вентилями, которые упоминаются как учетверенный пиксель;
фиг. 9 - общий вид, показывающий пиксель пятого варианта осуществления элемента фотонного смешения, в соответствии с изобретением, с четырьмя модуляционными фотовентилями и четырьмя накопительными вентилями и центральный симметрический средний вентиль G0 ;
фиг. 10 - схематический вид устройства, известного из уровня техники для определения информации об амплитуде и фазе световой волны;
фиг.11 - схематический вид устройства, в соответствии с изобретением для определения информации об амплитуде и фазе световой волны для ВЧ-модуляции;
фиг.12 - схематический вид устройства, в соответствии с изобретением для определения информации об амплитуде и фазе световой волны, например, для ПШ модуляции или прямоугольной модуляции;
фиг. 13 - а) вид в поперечном сечении пикселя шестого варианта осуществления элемента фотонного смешения, в соответствии с изобретением, с системой электронного считывания пикселя и предварительной обработки, использующей КМОП-технологию и b) и с) распределение потенциалов аналогично фиг.6 для двух фаз или полярностей напряжения модуляционного фотовентиля; и
фиг. 14 - общий вид пикселя шестого варианта осуществления элемента фотонного смешения, согласно изобретению, с четырьмя модуляционными фотовентилями, четыре накопительных вентиля и средний вентиль G0, крестообразной конфигурации, предпочтительно для цифровой модуляции. На фиг. 1а представлен вид в поперечном сечении отдельного пикселя 1 элемента фотонного смешения, использующего пример ПЗС-структуры. В этом случае элемент фотонного смешения, кроме пикселя 1, включает в себя структуры, необходимые для подачи напряжения и операций снятия сигнала. Внешние вентили Gsep только служат для электрического разграничения этого пикселя относительно смежных структур. Компоновка, представленная на фиг.1, сформирована на кремниевой подложке 2 p-типа. Смешение или операция умножения предложенной концепции будет сначала рассмотрена для высокочастотной модуляции чистой несущей. На фиг.1b - f схематически представлено поперечное сечение распределений потенциалов для разности фаз процедуры смешения. Средние модуляционные фотовентили Gam и Gbm представляют собой светочувствительную часть и находятся в инверсном состоянии. В дополнение к положительному напряжению U0 смещения на проводящем или оптически частично прозрачном верхнем покрытии, например, из полисиликона, они работают с налагаемыми противофазными напряжениями Um(t). Это позволяет получить в результате модуляционные напряжения Uam(t) = U0 + Um(t) и Ubm(t) = U0 - Um(t), соответственно. Они мультипликативно вызывают разделение носителей отрицательного заряда, генерируемых с помощью фотонов падающей световой волны в зоне пространственного заряда непосредственно под изолирующим слоем 3, например, из окиси кремния или нитрида кремния. Эти носители заряда (в рассматриваемом примере - это электроны) дрейфуют под действием модулирующего противофазного напряжения к близлежащим положительным накопительным вентилям Ga или Gb и интегрируются там, тогда как большая часть носителей или дырок течет к земляному выводу Si-подложки p-типа проводимости. Возможно также освещение с задней стороны. На фиг. 2 представлен вид сверху двух пикселей 1 элемента фотонного смешения, согласно изобретению, включающего в себя часть устройства 7 считывания межлинейного прохождения в виде 3-фазного сдвигового регистра ПЗС, на одном конце которого расположена электронная система считывания с диффузионным переходом для последовательной обработки значений заряда, полученных при корреляции. После предварительно определенного времени Т накопления заряда под всеми накопительными вентилями линейки, например в пикселе номера n зарядов qa и qb под Ga и Gb передаются путем соответствующего вентиля TGa и ТGb прохождения в 3-фазовом считывающем сдвиговом регистре. Разграничительные и разделительные вентили Gsep защищают корреляционный пиксель от нежелательных внешних воздействий и находятся, предпочтительно, под потенциалом земляного вывода. На фиг.3 представлены конфигурации напряжения, связанные с фиг.1. Модуляционные фотовентили Gam и Gbm работают посредством модуляционных напряжений фотовентилей, показанных на фиг.3, включая в себя противоположное по фазе модуляционное ВЧ-напряжение Um(t), которое описывается следующим образом:
Uam = U0+Umcos(

и
Ubm = U0+Umcos(



На фиг.1b - f ясно показано, что распределение потенциалов s(s) в зоне пространственного заряда выше пространственного протяжения репрезентативного пикселя 1 для всех рассматриваемых вентилей этого пикселя во временной последовательности от t0 до t8 для продолжительности периода Тm сигнала ВЧ-модуляции. На накопительных вентилях Ga и Gb относительно высокое положительное напряжение обеспечивает накопление фотогенерируемых носителей заряда после того, как они продрейфовали преобладающе в направлении левой или правой стороны пикселя 1, показанного на поперечном сечении фиг.1, согласно полярности напряжений Uam(t) и Ubm(t) модуляционных фотовентилей. Эта работа имеет специфический эффект, когда модуляция света и напряжение Uam(t) модуляционных фотовентилей содержит ту же самую частоту. Затем, в зависимости от соответствующей разности фаз


Основную процедуру корреляции можно математически описать следующим образом. В приемной плоскости в общем случае двухмерных массивов элементов фотонного смешения z = 0 и падающей модулированной световой волны описываются обычно с помощью Popt(x,y,t-




где





Popt(t-



где Р0 - среднее значение, содержащее фоновое освещение, Рm - амплитуда модуляции, wm - частота ВЧ-модуляции,





i(t) = I0+Im



с параметрами






На фиг. 4 представлена конфигурация этих идеализированных усредненных токов пикселя. Они представляют противофазные корреляционные функции, которые следуют из ВЧ-модулированного приемного света и напряжения ВЧ-модуляционных фотозатворов, которые подают на модуляционные фотовентили Gam и Gbm. Сумма этого соответствует току I0 при средней мощности Р0 света пикселя. Полное количество заряда, которое накоплено за время Т = N


с временем прохождения








Блок-схема соответствующего устройства измерения для оптического измерения трехмерных объектов с помощью ПШ-модуляции на основе предложенного массива корреляционного фотодетектора характеризуется более простой структурой (фиг. 12). В этом случае, кроме генератора 10 и элемента 11 задержки содержится та же самая структура (фиг.11). Согласно изобретению, с целью быстрого установления расстояния с относительно низким уровнем разрешения используется также простая модуляция прямоугольным импульсом передатчика 4 с помощью генератора 10 с периодом Т и предпочтительно с тем же самым импульсом и интервалом длительности Тв. Операцию установления времени прохождения выполняют в соответствии с уравнением (9). Уровень разрешения увеличивается ступенчатым образом на период длительности Т, который уменьшается на коэффициент 2, в случае которого первый этап измерения сначала следует за тем же самым вторым периодом, но со сдвигом по времени ТD = Т/4. Поперечное сечение, представленное на фиг.1, пикселя 1 элемента фотонного смешения, в соответствии с изобретением, можно оптимизировать относительно ограничивающей частоты посредством подходящей конфигурации в терминах градиента потенциалов, вызванного напряжением пушпульной модуляции. В этом отношении, на фиг.6 представлен вариант осуществления, в котором средний вентиль G0 размещен между модуляционными фотовентилями Gam и Gbm, при этом средний вентиль предпочтительно находится под напряжением U0 смещения и вместе с модуляционными фотовентилями Gam и Gbm формируются три потенциальных каскада. Необходимо, чтобы градиент потенциалов был по возможности одинаковым или модуляционное поле дрейфа было по возможности постоянным, и чтобы это достигалось с помощью увеличения числа каскадов от двух до трех или даже более. В фоточувствительной зоне пространственного заряда степень определения или объявления каскадов уменьшается в любом случае с расстоянием от изолирующего слоя 3. Этот эффект используется в другом варианте осуществления настоящего изобретения, а более конкретно - известен под названием "скрытый канал", то есть слабо легированный n-канал, который расположен на глубине несколько мкм от изолирующего слоя, и который расположен несколько глубже в p-подложке под модуляционными фотовентилями. Размещение также включает в себя затенение 12 для накопительных вентилей Ga и Gb для того, чтобы они не освещались световой волной и не вырабатывались дополнительные носители зарядов. На фиг.7 представлена конкретная конфигурация и подсоединение элементов фотонного смешения, в которых, по сравнению с фиг.1, два модуляционных фотовентиля разделены, соответственно, только общим накопительным вентилем Gs,n, таким образом достигая более высокой степени действия по заполнению. Это размещение также имеет затенение 12 для накопительных вентилей Ga и Gb. В этом случае полярность противофазных модуляционных напряжений или последовательность Gam,n и Gbm,n изменяется от пикселя к пикселю. Этот тройной период вентилей подходит в то же самое время для прямого считывания как трехфазный сдвиговый регистр. Недостаток, который имеется в определенных применениях, заключается в распределении заряда, а также в соответствующих смежных пикселях, который приводит в результате к очевидному увеличению размера пикселя и более низкой степени позиционного разрешения в рассматриваемом направлении. Вычисление этих взаимосвязей и влияний показывает, что по сравнению со 100%-ным используемым зарядом, после оценки разностей зарядов, рассматриваемый центральный пиксель получает только 50% заряда, и каждый из двух смежных пикселя приобретает по 25% заряда. Для иллюстрации распределения заряда на фиг.7, аналогично фиг.1, показаны различные фазы распределения потенциалов для модуляции несущей. На фиг.8 представлен другой преимущественный вариант осуществления конструкции пикселя элемента фотонного смешения, который в случае модуляции несущей не требует никакого IQ (в фазе, со сдвигом фазы на 90o) переключения между I- и Q-состояниями. Вместо вышеописанного двойного пикселя, можно использовать учетверенный пиксель с модуляционными фотовентилями Gam, Gbm, Gcm и Gdm, а также связанные накопительные вентили Ga, Gb, Gc и Gd, которые позволяют получить корреляцию, одновременно для четырех положений фазы, так как пушпульные напряжения модуляционных фотовентилей Uam(t) и Ubm(t), Ucm(t) и Udm(t) сдвинуты относительно друг друга в случае ВЧ-модуляции на 90o. Поэтому при ортогональном размещении относительно описанных модуляционных фотовентилей Gam с






Для простого определения полутонов отдельного пикселя, отдельные заряды всех накопительных вентилей пикселя суммируют: qпиксель = qа + qb + qс + qd. Процесс считывания в отношении соответствующих четырех зарядов необходимо выполнить в этом случае с помощью конструкции активного пикселя с использованием КМОП-технологии с предварительной обработкой пиксель-образного интегрированного сигнала. На фиг. 9, подобно фиг.8, представлен учетверенный пиксель элемента фотонного смешения, но с градиентом потенциалов, который сглажен, как представлено на фиг. 6, посредством центрального квадратного среднего вентиля G0, который находится, предпочтительно, под потенциалом U0. На фиг. 14, подобно фиг. 9, представлен учетверенный пиксель элемента фотонного смешения со структурой, которая оптимизирована для цифровых модуляционных сигналов. Средний вентиль Gg, размещенный между предпочтительно квадратными модуляционными фотовентилями, служит аналогичным способом (фиг. 9) для сглаживания градиента потенциалов, полученного с помощью напряжения модуляционных фотовентилей. В заключение, на фиг.13 представлен другой предпочтительный вариант осуществления пикселя 1, который в отличие от раскрытых выше вариантов осуществления, выполнен без использования ПЗС-технологии, но использованием КМОП-технологии с электронным пиксель-образным считыванием и системой 15 предварительной обработки сигнала. В этом случае, режим работы модуляционного, зависящего от напряжения дрейфа носителей зарядов по раскачке зарядов является таким же, как и в обсужденных выше вариантах осуществления. Единственное различие в варианте осуществления, показанном на фиг.13, заключается в способе выполнения другой обработки в отношении зарядов qa и qb, которые продрейфовали к накопительным вентилям Ga и Gb. В настоящем варианте осуществления накопительные вентили Ga и Gb находятся в виде сгруппированных pn-диодов. Положительно смещенные накопительные вентили Ga и Gb формируют с помощью n+-легированных электродов на предпочтительно слабо легированной p-Si-подложке 3 (фиг.13). В случае, известном как режим работы "плавающий-диффузия", или в режиме считывания напряжения, с высокого по значению сопротивления, как и в случае использования ПЗС-технологии, заряды qa и qb суммируются на емкостях накопительных вентилей Ga и Gb и считываются в режиме высокого по значению сопротивления в виде значений напряжения. Преимуществом является также возможность использования режима считывания тока, в котором фотогенерируемые носители заряда не суммируются в потенциальной яме, а непрерывно передаются с помощью выходной диффузии посредством подходящих схем считывания тока, которые подсоединяются к накопительным вентилям Ga и Gb, соответственно. Эти заряды затем накапливаются, например, на соответствующей внешней емкости. Схема считывания в режиме считывания тока, которая сохраняет напряжение накопительных вентилей фактически на постоянном уровне благодаря обратной связи усилителя, преимущественно гарантирует то, что после интенсивного облучения пикселя, количество накопленных зарядов qa и qb не приводит в результате к реакции на или действительному переполнению потенциальной ямы. Таким образом, значительно устраняется динамика элемента фотонного смешения. В этом случае, вышеописанная технология, включающая в себя также слабо легированный n-канал ("скрытый слой") под изолирующим слоем модуляционных вентилей, позволяет достигнуть усовершенствований, связанных к тому же и с увеличением ограничивающей частоты. Построение элемента фотонного смешения с использованием КМОП-технологии позволяет дополнительно использовать конструкцию активного пикселя (КАП (APS)), с помощью которой, в каждом пикселе, схему считывания и предварительной обработки сигнала можно интегрировать в элементе фотонного смешения. Это позволяет выполнить предварительную обработку электрических сигналов непосредственно в пикселе до прохождения сигналов во внешнюю схему. В частности, таким способом можно получить информацию об амплитуде и фазе непосредственно на кристалле так, чтобы в дальнейшем можно было увеличить скорость измерения. Другая конфигурация изобретения предусматривает использование предпочтительно двухмерной матрицы с элементами фотонного смешения для процедуры поиска и сопровождения трехмерного электронного объекта, пассивно или активно освещая объекты на основе различных критериев, например, таких как форма объекта, положение, цвет, поляризации, вектор скорости, яркость или комбинацию свойств объекта. Если, например, при прохождении различных сигналов модуляции (например, по частоте или с чередованием кода) при трехмерном измерении падающей световой волны, которая может быть первоначально неизвестной, локальная корреляция находится с помощью критерия разностных токов дрейфа, не равных нулю, то этот диапазон объекта можно потом непрерывно специфически измерять в отношении упомянутых свойств объекта и сопровождать, возможно и в случае изменений, с помощью цепи регулировки, которая, в частности, также включает в себя глубину изображения. Элемент фотонного смешения используется в различных режимах работы, которые изложены ниже. В этом отношении суммарный заряд на накопительных вентилях a и Gb представляет меньший интерес, так как он всегда соответствует полной интенсивности падающих световых волн, a + qb = const



1).







Класс H01L27/148 формирователи сигналов изображения на приборах с зарядовой связью