способ получения трифторметильных производных фуллеренов

Классы МПК:C07C17/007 из углерода или карбидов и галогенов
C07C19/08 содержащие фтор 
C01B31/02 получение углерода
Автор(ы):, , ,
Патентообладатель(и):Химический факультет МГУ
Приоритеты:
подача заявки:
2001-03-02
публикация патента:

Изобретение относится к химической технологии фуллеренов и их производных, которые применяют в качестве реагентов для производства смазочных материалов. Способ осуществляют путем взаимодействия фуллерена с трифторметилирующими реагентами, в качестве которых используют трифторацетаты металлов, выбранные из группы: серебро (I), медь (II), палладий (II), хром (II). Процесс ведут при температуре 300-400oС и давлении 10-3-10 Па. Технический результат - повышение выхода трифторметильных производных фуллерена.

Формула изобретения

Способ получения трифторметильных производных взаимодействием фуллерена с трифторметилирующим реагентом при повышенной температуре, отличающийся тем, что в качестве трифторметилирующих реагентов используют трифторацетаты металлов, выбранные из группы: серебро (I), медь (II), палладий (II), хром (II), и процесс ведут при температуре 300-400oС и давлении 10-3-10 Па.

Описание изобретения к патенту

Изобретение относится к химической технологии фуллеренов и их производных, которые могут применяться в качестве реагентов в органическом синтезе. Как и фторпроизводные фуллеренов, трифторметильные производные обладают полезными фрикционными характеристиками, что говорит о возможности их применения в качестве смазочных веществ. Однако первые из перечисленных соединений для этой цели малопригодны вследствие гидролиза с образованием плавиковой кислоты (HF), в то время как вторые устойчивы к действию воды. Таким образом, трифторметилированные фуллерены являются перспективными соединениями для производства различных смазочных материалов.

Трифторметилированными фуллеренами называют вещества, молекулы которых содержат углерод и фтор, причем все атомы фтора входят в состав метильных групп, присоединенных к фуллереновой сфере.

Трифторметильные производные фуллеренов относятся к перфторалкильным производным. Перфторалкильные производные могут быть получены посредством взаимодействия фуллерена С60 со свободными радикалами, генерируемыми путем термического или фотохимического разложения фторалкилиодидов и фтордиацилпероксидов (Fagan P.J., Krusic P.J., McEwen C.N, Lazar J. et al. // Science. 1993. V. 262. P. 404-407).

Наиболее близким к предложенному способу является способ получения трифторметильных производных по реакции фуллерена с трифторметилиодидом в гексафторбензоле. Выдерживание раствора С60 в гексафторбензоле с избытком трифторметилиодида в запаянной ампуле при 200oС в течение 24 часов приводит к получению продукта, содержащего от 3 до 14 СF3 групп. (Fagan P.J., Krusic P. J. , McEwen C.N., Lazar J. et al.// Science. 1993. V.262. P.405) По мнению авторов в результате реакции получается смесь продукта с исходным фуллереном [60] , иодом, фторбензолом и сам продукт требует дальнейшего отделения, а также по данной методике продукт получается с низким выходом (15-20%).

Недостатком указанного способа является наличие в продуктах трифторметилирования исходных реагентов и продуктов их разложения.

Решаемая задача: получение трифторметильных производных фуллеренов, не содержащих исходных реагентов (фуллерена и трифторметилирующего агента) и продуктов их разложения.

Решаемая задача достигается предложенным способом, заключающимся в получении трифторметильных производных фуллеренов в результате реакций фуллеренов с трифторацетатами серебра(I), меди(II), палладия(II), хрома(II) при температуре 300-400oС и давлении 10-3-10 Па.

Отличием предложенного способа является то, что в качестве реагентов, приводящих к образованию продуктов трифторметилирования, используют трифторацетаты серебра(I), меди(II), палладия(II) или хрома(II) и процесс ведут при 300-400oС и давлении 10-3-10 Па.

При нагревании трифторацетатов образуются СF3 радикалы, которые присоединяются к фуллеренам по двойным связям. Более легколетучие трифторметильные производные фуллеренов отгоняются в вакууме из реакционной зоны, а исходные реагенты и продукты разложения трифторацетатов остаются. Поэтому конечный продукт трифторметилирования не загрязнен непрореагировавшим С60 и продуктами разложения трифторацетатов. Температура для каждого синтеза была выбрана в соответствии с температурой разложения конкретного трифторацетата. Нижний температурный предел - температура, при которой начиналась реакция в твердой фазе, верхний - температура, выше которой начинается возгонка исходного фуллерена, т.е. загрязнение продукта. Интервал по давлению выбран 10-3-10 Па в связи с тем, что при давлении 10-3 Па эти реакции можно проводить в масс-спектрометре, а до 10 Па в установке для твердофазных синтезов. Давление ниже чем 10-3 Па выбирать нельзя, т.к. в этом случае отгоняется исходный фуллерен; давление выше чем 10 Па нельзя использовать, т.к в этом случае не будет наблюдаться никакой отгонки продукта.

Сущность изобретения заключается в получении трифторметильных производных фуллеренов посредством взаимодействия фуллеренов с трифторацетатами серебра(I), меди(II), палладия(II), хрома(II) при температуре 300-400oС и давлении 10-3-10 Па.

Фуллерен смешивают с трифторацетатом упомянутого выше металла при комнатной температуре, перетирают и полученную таким образом реакционную смесь выдерживают при 300-400oС в вакууме (давление 10-3-10 Па). При этих условиях образующийся продукт трифторметилирования вследствие испарения покидает горячую реакционную зону и осаждается на более холодных частях реакционного оборудования в виде мелких кристаллов желто-коричневого цвета. Суммарный выход всех трифторметильных производных составляет 80-90%. Масс-спектры ионизации посредством лазерной десорбции (ЛДМС) продуктов трифторметилирования С60 и С70 состоят из набора отрицательных ионов С60(СF3)n - и С70(СF3)n - соответственно; в обоих случаях доминируют ионы с нечетным n. Для С60 n изменяется от 1 до 20, для С70 - от 1 до 22. Важно отметить, что в полученных масс-спектрах отсутствуют пики С60, С70 и продуктов разложения трифторацетатов (оксидов или фторидов).

Пример 1. 0,120 г фуллерена С60 и 0,810 г трифторацетата серебра(I) смешивают и перетирают в агатовой ступке на воздухе. Полученную таким образом реакционную смесь насыпают в никелевую лодочку. Лодочку помещают в стеклянную пробирку в горизонтальном положении. Пробирку с лодочкой загружают в стеклянную толстостенную трубку, один конец которой запаян, а другой присоединяется к вакуумной системе. Трубку с пробиркой и лодочкой помещают в трубчатую печь таким образом, что часть пробирки, где находится лодочка с реакционной смесью, располагается в зоне нагрева печи, а остальная часть - в холодной зоне. Реакционную смесь выдерживают в течение 6 ч в вакууме (давление 10-2 Па) при температуре 300oС.

Образующийся при этом продукт собирается на холодной части пробирки, и после окончания опыта его счищают. Согласно данным ЛДМС полученный продукт представляет собой смесь трифторметильных производных от С60(СF3)2 до С60(СF3)20. Суммарный выход всех трифторметильных производных, содержащихся в получаемом продукте, составляет 86%.

Пример 2. 0,086 г фуллерена С60 и 0,381 г трифторацетата меди(II) смешивают и перетирают. Полученную таким образом реакционную смесь насыпают в платиновую лодочку. Далее выполняют те же операции, что и в примере 1, с той лишь разницей, что реакционную смесь выдерживают при температуре 350oС и давлении 10-1 Па.

Полученный продукт, согласно данным ЛДМС, представляет собой смесь трифторметильных производных от С60(СF3)2 до С60(СF3)8. Суммарный выход всех трифторметильных производных, содержащихся в получаемом продукте, составляет 83%.

Пример 3. 0,100 г фуллерена С60 и 0,428 г трифторацетата палладия(II) смешивают, перетирают и помещают в реакционное оборудование, как в примере 1. Реакционную смесь выдерживают в течение 6 ч (давление 10-2 Па) при 370oС. Образующийся при этом продукт собирается на холодной части пробирки, и после окончания опыта его счищают. Согласно данным ЛДМС продукт содержит трифторметильные производные от С60(СF3)2 до С60(СF3)6. Суммарный выход всех продуктов реакции составляет 82%.

Пример 4. 0,070 г фуллерена С60 и 0,230 г трифторацетата хрома(II) смешивают, перетирают и помещают в реакционное оборудование, как в примере 1. Реакционную смесь выдерживают в течение 6 ч в вакууме (давление 10-2 Па) при 400oС. Образующийся при этом продукт собирается на холодной части пробирки, и после окончания опыта его счищают. Согласно данным ЛДМС продукт содержит трифторметильные производные от С60(СF3)2 до С60(СF3)4. Суммарный выход всех продуктов реакции составляет 80%.

Таким образом, результатом предложенного является получение трифторметильных производных с высокими выходами (80-90%), не содержащих исходных реагентов и продуктов их разложения.

Класс C07C17/007 из углерода или карбидов и галогенов

способ получения поли-монофторида диуглерода -  патент 2404918 (27.11.2010)
способ переработки трифторметансульфофторида в соль трифторметансульфокислоты и устройство для его осуществления -  патент 2305094 (27.08.2007)
способ очистки тетрафторметана и его применение -  патент 2215730 (10.11.2003)
способ получения тетрафторметана и устройство для его осуществления -  патент 2211210 (27.08.2003)
способ получения перфторуглеродов -  патент 2183615 (20.06.2002)
способ получения тетрафторметана -  патент 2181351 (20.04.2002)
способ получения тетрафторметана -  патент 2155743 (10.09.2000)
способ получения фторуглеродных соединений (варианты) и установка для его осуществления -  патент 2154624 (20.08.2000)
способ получения перфторуглеродов -  патент 2150451 (10.06.2000)
способ получения перфторуглеродов -  патент 2130007 (10.05.1999)

Класс C07C19/08 содержащие фтор 

Класс C01B31/02 получение углерода

электродная масса для самообжигающихся электродов ферросплавных печей -  патент 2529235 (27.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
свч плазменный конвертор -  патент 2522636 (20.07.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
полимерный нанокомпозит с управляемой анизотропией углеродных нанотрубок и способ его получения -  патент 2520435 (27.06.2014)
способ получения углерод-металлического материала каталитическим пиролизом этанола -  патент 2516548 (20.05.2014)
способ получения углеродных наноматериалов с нанесённым диоксидом кремния -  патент 2516409 (20.05.2014)
тонкодисперсная органическая суспензия углеродных металлсодержащих наноструктур и способ ее изготовления -  патент 2515858 (20.05.2014)
способ получения сажи, содержащей фуллерены и нанотрубки, и устройство для его осуществления -  патент 2511384 (10.04.2014)
способ заполнения внутренней полости нанотрубок химическим веществом -  патент 2511218 (10.04.2014)
Наверх