способ получения фторангидридов сульфоновых кислот
Классы МПК: | C07C309/80 насыщенного углеродного скелета C07C309/85 с галогенсульфонильными группами, связанными с атомами углерода колец, кроме шестичленных ароматических колец C07C309/86 с галогенсульфонильными группами, связанными с атомами углерода шестичленных ароматических колец углеродного скелета |
Автор(ы): | Варфоломеев Л.И. (RU), Гродецкий С.А. (RU), Дудкин В.В. (RU), Кальк В.Р. (RU), Катьянова В.Р. (RU), Козлов Н.А. (RU), Кураков В.А. (RU), Матвеев А.А. (RU), Каурова Г.И. (RU), Молдавский Д.Д. (RU), Маталин В.А. (RU), Тимофеев С.Н. (RU), Федорова Т.Е. (RU), Шкультецкая Л.В. (RU), Фурин Г.Г. (RU), КИ Ван Чи (KR) |
Патентообладатель(и): | ГУП "Ангарский электролизный химический комбинат" (RU) |
Приоритеты: |
подача заявки:
2001-02-27 публикация патента:
20.06.2002 |
Изобретение относится к усовершенствованному способу получения фторангидридов сульфоновых кислот, которые находят широкое применение как биологически активные соединения и как промежуточные продукты для органического синтеза, в частности для получения фторангидридов перфторированных сульфоновых кислот электрохимическим фторированием. Фторангидриды сульфоновых кислот получают путем обработки соответствующих хлорангидридов безводным фтористым водородом в присутствии хроммагниевого катализатора при 80-200oС. Настоящий способ исключает гидролиз и применение пожароопасных органических растворителей при сохранении высокого выхода целевых продуктов. 1 табл.
Рисунок 1
Формула изобретения
Способ получения фторангидридов сульфоновых кислот общей формулы RSO2F, где R обозначает С1-С10 алкил, незамещенный или С1-С3 алкилзамещенный арил, хлор, взаимодействием соответствующего хлорангидрида сульфоновой кислоты с неорганическим фторидом при нагревании, отличающийся тем, что в качестве неорганического фторида используют безводный фторид водорода и взаимодействие осуществляют в присутствии хроммагниевого катализатора при 80-200oС.Описание изобретения к патенту
Изобретение относится к способам получения фторангидридов сульфоновых кислот (иначе сульфофторидов) общей формулы RSО2F, где R означает С1-С10 алкил, незамещенный или C1-С3 алкилзамещенный циклогексил, незамещенный или C1-С3 алкилзамещенный арил, а также хлор. Фторангидриды сульфоновых кислот (далее фторангидриды) находят широкое применение как биологически активные соединения и как промежуточные продукты для органического синтеза, в частности для получения фторангидридов перфторированных сульфоновых кислот электрохимическим фторированием. [Заявка ФРГ 2725211, С 07 С 143/70, опубл. 1978, Заявка Германии 4208364, С 25 В 3/08, опубл. 1993]. Известны следующие способы получения фторангидридов:1. Окислением алкилтиолов формулы RSH или R2S2 оксидами азота NO2 или N2О4 в водном растворе HF с концентрацией 50-100% (оптимально 80-85%). Выход октансульфофторида составляет 87%, циклогексансульфофторида - 30% [Synthesis, 1974, 12, с. 887, пат. СССР 511854, С 07 С 147/02, опубл. 1976] . Процесс проводится в большом избытке HF и с 30% избытком окислителя. Недостатками этого способа являются невысокий выход целевого продукта, большое количество побочных продуктов. 2. Фторированием хлорангидрида сульфоновой кислоты (далее хлорангидрид) неорганическим фторидом в среде органического растворителя:
- дифторидом ксенона в ацетонитриле с выходом метансульфофторида 70% и бензолсульфофторида - 20% (ЖОХ 1974, том С VI, вып. 11, с. 2592);
- фторидом натрия в среде диметилформамида или тетраметиленсульфона с выходом целевых продуктов (RSО2F, где R=СН3, С6Н5, н-C8H17, СН3С6Н4) 60-70% [JACS, 1963, V 85, с. 997];
- фторид натрия использовался и для фторирования SО2Cl2, при этом образуется фторангидрид ClSО2F с 64% выходом [J. Org. Chem. I960, V 25, с. 2016-20191]. Недостатками этих способов являются невысокий выход целевых продуктов, большое количество токсичных и трудноутилизируемых отходов. Фторирование хлорангидрида фторидом калия в водном метиленхлориде в присутствии гомогенного катализатора-амина, аммониевой или фосфониевой соли при комнатной температуре повышает выход целевых продуктов - бензолсульфофторид получен с выходом до 96% [Заявка ФРГ 2512498, С 07 С 143/70, опубл. 1976]. Недостатками этого способа являются наличие токсичного (канцерогенного) растворителя и сложность разделения продуктов реакции, а наличие воды приводит к образованию продуктов гидролиза, кроме того, в этом случае также образуются токсичные трудноутилизируемые отходы. 3. Фторированием в расплаве неорганического фторида. Фторирование хлорангидрида в расплаве КF2Н2О при 90oС обеспечивает выход целевых продуктов до 97%. Так метансульфофторид получен с выходом 97%, бензолсульфофторид с 95% выходом. Целевые продукты отделяют от осадка (КСl) фильтрацией, промывают осадок эфиром, эфирный раствор и фильтрат промывают водой, сушат и перегоняют (авторское свидетельство СССР 657020, С 07 С 14370, 1979). К недостаткам этого способа относится наличие кристаллизационной воды во фторирующем реагенте, также приводящей к гидролизу; использование пожаро- и взрывоопасного эфира; многостадийность и большое количество отходов, что делает способ неудобным для реализации в промышленных масштабах. Изобретение решает задачу разработки технологичного и универсального способа получения фторангидридов сульфоновых кислот формулы RSO2F с различными заместителями, исключающего гидролиз, с простой стадией выделения целевого продукта при сохранении высокого выхода и дающего возможность организации непрерывного процесса. Сущность изобретения заключается в том, что фторирование хлорангидрида ведут без растворителя безводным HF в присутствии хроммагниевого катализатора при 80-200oС. Отличием от известных способов является использование безводного HF в присутствии хроммагниевого катализатора, гетерогенного по отношению к реакционной среде. Различные модификации хроммагниевого катализатора широко используются при замещении хлора на фтор в реакциях газофазного фторирования галогенуглеводородов. К таким катализаторам относится промышленный катализатор "ГИПХ-55" (ТУ 301-02-83-90) или приготовленный смешением фторидов Сr+3 и Mg+2 в мольном соотношении 0,1-5:1 соответственно с последующей сушкой при 400oС в атмосфере гелия и активацией HF при 200oС 2 часа и при 400oС 1 час [J. Chem. Soc. Chem. Commun 1995 (3), 2383-4]. Сведений о применении катализаторов такого типа для замещения хлора на фтор в хлорсульфонильной группе авторы не обнаружили, возможность проведения этого замещения с высоким выходом отнюдь не является очевидной, и лишь работами авторов впервые показано, что хроммагниевые катализаторы обеспечивают высокую селективность процесса замещения хлора на фтор в хлорсульфонильных группах с помощью безводной HF, благодаря чему исключают гидролиз и осмоление целевого продукта, и образуется практически двухкомпонентная система с побочным хлористым водородом, который дросселируется во время процесса, а загрязненный фтористым водородом фторангидрид или непосредственно направляется на стадию электрохимического фторирования или на стадию ректификации. Изобретение иллюстрируется следующими примерами:
Пример 1. В реактор из стали 12х18Н10Т емкостью 0,3 л загружают гранулированный хроммагниевый катализатор марки "ГИПХ-55", предварительно высушенный в вакууме при 150oС и активированный фтористым водородом при 250-450oС, в количестве 105 г. Затем в реактор помещают метансульфохлорид 115 г и фтористый водород 30 г. Смесь нагревают до 100-150oС, поддерживая давление насыщенных паров фтористого водорода. По окончании процесса (через 2,5-3 ч) реактор охлаждают и выгружают фторангидрид-сырец 97,5 г, который, в случае необходимости, перегоняют в вакууме или направляют на дальнейшее фторирование. Пример 2. В реактор из стали 12х18Н105 емкостью 16 л, снабженный регулирующим клапаном, отрегулированным на 4,1 МПа, электрообогревом, заполненный на 80% хроммагниевым катализатором с соотношением мольным CrF3:MgF2=0,5:1, высушенным при 200oС в атмосфере азота и активированным HF при 300-400oС в течение 2 ч, загружают 10 кг этилсульфохлорида и 3 кг фтористого водорода. Смесь нагревают до 80-130oС в течение 3 ч, после чего реактор охлаждают и выгружают загрязненный фтористым водородом этилсульфофторид, который промывают и отделяют органическую фазу; получено 8,6 кг, выход целевого 98,6 мас.%. Пример 3. В трубчатый реактор длиной 2,5 м и диаметром 0,2 м, заполненный хроммагниевым катализатором и нагретый до 150oС, подают SО2Cl2 и HF со скоростями 13,5 кг/ч и 2,1 кг/ч соответственно. Продукты реакции собирают в приемник, охлажденный до минус 78oС. После завершения процесса сырец хлорсульфофторида ректификуют. Выход 97,5-99%. Пример 4. В реактор с катализатором по примеру 1 загружают этилбензолсульфохлорид 205 г и фтористый водород в количестве 30 г. Процесс ведут при температуре 130-160oС. Получено 187 г этилбензолсульфофторида с выходом 99%. Пример 5. В реактор по примеру 1 с катализатором CrF3:MgF2=0,l:l (мольное соотношение) загружают циклогексилсульфохлорида в количестве 92,0 г и 15 г HF. Процесс ведут при температуре 140-160oС, получено 83,5 г циклогексилсульфофторида. Выход 99,8%. Пример 6. В реактор с катализатором по примеру 1 загружают 215 г октилсульфохлорида и 25 г НF. Процесс ведут при температуре 100-140oС. Получено 196 г октилсульфофторида, что соответствует выходу 98,8%. Пример 7. В реактор с катализатором по примеру 1 загружают 115 г этилциклогексилсульфохлорида и 14 г HF. Смесь нагревают до 130-160oС в течение 4 ч, сбрасывая избыточное давление. После выгрузки получено 105 г этилциклогексилсульфофторида. Выход 99,0%. Остальные результаты проведенного нами исследования по использованию изобретения представлены в таблице. Опыты проведены в реакторе с катализатором по примеру 1, опыт 20 в реакторе по примеру 3. Как видно из примеров, проведение процесса по указанному способу обеспечивает высокий выход целевых продуктов при очень простом их выделении. Способ применим для получения широкого ассортимента фторангидридов с различными заместителями не только в лабораторных условиях, но и в промышленном масштабе.
Класс C07C309/80 насыщенного углеродного скелета
Класс C07C309/85 с галогенсульфонильными группами, связанными с атомами углерода колец, кроме шестичленных ароматических колец
Класс C07C309/86 с галогенсульфонильными группами, связанными с атомами углерода шестичленных ароматических колец углеродного скелета