способ изготовления изделий из титанового сплава вт16

Классы МПК:C22F1/18 тугоплавких или жаростойких металлов или их сплавов 
Автор(ы):
Патентообладатель(и):Баулин Анатолий Викторович
Приоритеты:
подача заявки:
2000-02-11
публикация патента:

Изобретение относится к металлургии и может быть использовано в производстве для изготовления изделий из титановых сплавов, в частности таких, как болты и пружины из титанового сплава ВТ 16. Способ предусматривает отжиг заготовки длинномерного прутка при 680-800oС, последующую закалку путем нагрева до 780-880oС и охлаждения со скоростью нагрева и охлаждения 0,1-25oС/с и старение в две ступени с температурой первой ступени 300-380oС и второй 400-520oС. Нагрев под закалку может быть совмещен с деформацией, а закалка и деформация проведены в одном технологическом цикле. Техническим результатом является повышение качества изготовления деталей, уменьшение трудоемкости их изготовления и повышение производительности. 1 табл.
Рисунок 1

Формула изобретения

1. Способ изготовления изделий из титанового сплава ВТ 16, включающий отжиг заготовки перед закалкой, закалку, деформацию и старение, отличающийся тем, что в качестве заготовки используют длинномерный пруток, отжиг проводят при 680-800oС, закалку осуществляют путем нагрева до 780-880oС и охлаждения со скоростью нагрева и охлаждения 0,1-25oС/с, а старение проводят в две ступени с температурой первой ступени 300-380oС и второй 400-520oС.

2. Способ по п.1, отличающийся тем, что нагрев под закалку совмещают с деформацией, а закалку и деформацию проводят в одном технологическом цикле.

Описание изобретения к патенту

Изобретение относится к области металлургии, в частности к специализированному производству высокоресурсных титановых деталей авиационной, морской, автомобильной и другой машиностроительной техники.

Титановые материалы по удельной прочности, коррозионной стойкости и демпфирующим свойствам превосходят традиционные конструкционные материалы. Однако их использование в качестве высокоресурсных деталей и узлов ограничено их низкой конструктивной прочностью, связанной с особенностями проблем титановой металлообработки. Титановая металлообработка, построенная по схеме: слиток - переходные заготовки и полуфабрикаты: прутки, листы, проволока, трубы и штамповки. Полуфабрикаты из заготовительного металлургического производства поступают в машиностроение, где перерабатываются в детали, упрочняемые термообработкой. Комплексная проблема конструктивной прочности заключается в получении гомогенного материала с мелкозернистой структурой, упрочненной высокодисперсной фазой и качественной поверхностью деталей. Мелкозернистая структура и качественная поверхность снижают действие концентраторов напряжений и, как следствие, повышают сопротивляемость хрупкому разрушению при работе в условиях знакопеременных динамических нагрузок.

Наиболее близким способом к предложенному является способ, описанный в патенте RU 1233523. Данный способ включает отжиг заготовки при 780oС, закалку с температуры 850oС, горячую деформацию (высадку головки болта) и старение при 540oС в течение 8 ч.

К недостаткам способа можно отнести то, что проведение дополнительного нагрева заготовки под деформацию обуславливает окисление и газонасыщение материала и коробление заготовки, что снижает качество изделия и требует припуска материала заготовки на последующую механообработку, которая сама по себе является трудоемкой операцией. Разрезка прутков на мерные заготовки не позволяет автоматизировать процесс изготовления изделий на высокопроизводительных линиях крупносерийного производства, что увеличивает трудоемкость и уменьшает коэффициент использования дорогостоящего металла. Все вышеизложенное приводит к низкому качеству изделий.

Задачей изобретения является устранение вышеприведенных недостатков способа.

Поставленная задача решается тем, что в способе изготовления изделий из титанового сплава ВТ 16, включающем отжиг заготовки перед закалкой, закалку, деформацию и старение, в качестве заготовки используют длинномерный пруток, отжиг проводят при 680-800oС, закалку осуществляют путем нагрева до 780-880oС и охлаждения со скоростью нагрева и охлаждения 0,1-25oС/с, а старение проводят в две ступени с температурой первой ступени 300-380oС и второй 400-520oС.

Задача может решаться также тем, что нагрев под закалку совмещают с деформацией, а закалку и деформацию проводят в одном технологическом цикле.

Разработанные температурно-скоростные параметры закалки предлагаемого способа обеспечивают получение материала с высокой технологической пластичностью, позволяющей проводить холодную деформацию (формообразование изделий) без предварительного нагрева, что невозможно реализовать известным способом.

В качестве источника нагрева при закалке в предлагаемом способе используется электроконтактный и индукционный нагрев. Исключительно важно, что предлагаемый способ позволяет в качестве источника нагрева реализовать деформационный нагрев, например при прокатке, волочении и прессовании. Это позволяет закалку совместить с проведением деформации в одном технологическом цикле.

Основная проблема связана с физическими особенностями поведения титана и его сплавов при термической обработке. По классической схеме изготовления деталей машин управляющая термообработка следует после формообразования деталей. В случае титановых изделий такая технологическая схема не обеспечивает необходимой технологичности и качества титанового материала вследствие его высокой склонности к росту зерна, окислению и газонасыщению при термообработке и, как следствие, к потере пластичности и охрупчиванию материала. Температура полиморфного превращения (Тпп) у сплава ВТ 16 равна 840-880oС, при которой происходит фазовая способ изготовления изделий из титанового сплава вт16, патент № 2183691+способ изготовления изделий из титанового сплава вт16, патент № 2183691способ изготовления изделий из титанового сплава вт16, патент № 2183691способ изготовления изделий из титанового сплава вт16, патент № 2183691способ изготовления изделий из титанового сплава вт16, патент № 2183691 перекристаллизация, является базовой характеристикой для назначения режимов термической обработки, но именно при Тпп и выше нее в титановых сплавах наблюдается катастрофический рост зерна и огрубление внутризеренной структуры.

Надо отметить, что в отличие от сталей крупнозернистая структура титановых материалов не исправляется термической обработкой. Поэтому при термической обработке температура закалки назначается на 80-150oС ниже Тпп сплава. Но в этих условиях не происходит полная перекристаллизация, которая не обеспечивает полной закалки и не исправляет наследственности предшествующей обработки, вследствие чего материал не обладает достаточным качеством для таких ответственных деталей, как болты и пружины. К этому надо добавить, что при термообработке садок деталей в печах и особенно при закалке в воде всегда существует острая проблема их коробления, усугубляющаяся низкой теплопроводностью титана.

Изучение особенностей фазовой перекристаллизации титана и его сплавов в условиях скоростного нагрева без изотермической выдержки позволило повысить температуру закалки без опасности роста зерна и огрубления внутризеренной структуры с обеспечением титановому материалу ВТ 16 высокой технологической пластичности, необходимой для холодного формообразования деталей деформацией и высокой эффективности упрочнения холодноотформованных деталей в процессе последующего старения. Особенность скоростной фазовой перекристаллизации в отличие от традиционных нагревов в печах с изотермической выдержкой, как в известном способе, заключается в отставании скорости диффузионных процессов фазовой перекристаллизации от скорости повышения температуры, что существенно сказывается на кинетике и температуре полиморфного превращения сплава. Физическая сущность кинетики скоростной фазовой перекристаллизации заключается в следующем. В реальных условиях структура титанового сплава, условно говоря, представляет гетерогенную смесь способ изготовления изделий из титанового сплава вт16, патент № 2183691/способ изготовления изделий из титанового сплава вт16, патент № 2183691 фаз титана, отличающихся друг от друга характером и степенью легированности даже в случае одноименных фаз. Так способ изготовления изделий из титанового сплава вт16, патент № 2183691-фаза сплава ВТ 16, представляющая твердый раствор Аl в способ изготовления изделий из титанового сплава вт16, патент № 2183691-титане, может иметь переменный состав, переходящий в более легированный упорядоченный твердый раствор способ изготовления изделий из титанового сплава вт16, патент № 21836912-фазу. Эта фаза, обогащенная Аl1, который повышает Тпп, образуется по границам зерен в условиях отжига при медленном охлаждении от температур обработки вследствие ограниченной растворимости Al в способ изготовления изделий из титанового сплава вт16, патент № 2183691-титане при низких температурах. Наоборот, способ изготовления изделий из титанового сплава вт16, патент № 2183691-фазы обогащены способ изготовления изделий из титанового сплава вт16, патент № 2183691-стабилизирующими элементами, которые понижают Тпп. Строго говоря, каждая фаза в гетерогенной структуре сплава в своем микрообъеме представляет титановый сплав конкретного состава с конкретной температурой полиморфного превращения, отличающейся от Тпп сплава среднего состава. В условиях традиционных медленных нагревов с изотермической выдержкой диффузионные процессы фазовой перекристаллизации снимают концентрированную неоднородность фаз исходной способ изготовления изделий из титанового сплава вт16, патент № 2183691/способ изготовления изделий из титанового сплава вт16, патент № 2183691 структуры и фазовая перекристаллизация протекает в узком интервале температур, а в нелегированном титане практически при постоянной температуре. С увеличением скорости нагрева скорость выравнивающей диффузии не соответствует скорости изменения температуры и фазовое превращение начинается несколько раньше, а заканчивается при более высокой температуре относительно равновесной Тпп сплава в соответствии с дифференцированностью легирования фаз исходной структуры. Получается таким образом, что практически осуществляется полная фазовая перекристаллизация, но расположенная по границам субструктуры способ изготовления изделий из титанового сплава вт16, патент № 21836912-фаза подавляет рост зерна и огрубление внутризеренной структуры. Более того, специфика кинетики скоростной фазовой перекристаллизации заключается в увеличении центров перекристаллизации и, как следствие, измельчении субструктуры сплава, что повышает пластичность сплава и конструктивную прочность титановых изделий. Особая исключительность скоростной фазовой перекристаллизации еще и в том, что она позволяет формировать структуру закалки с максимальным количеством высокопластичной и механически стабильной способ изготовления изделий из титанового сплава вт16, патент № 2183691-фазы, которая обеспечивает холодное формообразование деформацией и в то же время осуществляет высокодисперсный распад способ изготовления изделий из титанового сплава вт16, патент № 2183691-фазы при старении отформованных изделий, придавая им высокую конструктивную прочность. Таким образом, управляя фазовым составом, легированностью фаз исходной структуры и технологическими параметрами скоростной закалки, можно формировать необходимую структуру с строго заданным уровнем технологических и служебных свойств материала и изделий, недостижимых традиционными способами обработки. Особенности скоростной фазовой перекристаллизации реализованы в предлагаемом способе.

Исключительно важно, что в качестве источника нагрева можно использовать деформационный нагрев, например, при прокатке, волочении и прессовании. Это позволяет непрерывную закалку совместить с проведением деформации в одном технологическом цикле.

Применительно к изготовлению болтов и пружин в соответствии с технологической схемой, предложенной в заявляемом способе, в заготовительном металлургическом производстве изготавливаются закаленные длинномерные шлифованные или обточенные прутки и бухты проволоки с высококачественной поверхностью, которые поступают в специализированное производство для навивки пружин и холодной высадки болтов, после чего следует термическая операция старелия отформованных деталей, то есть их упрочнение.

Предложенный способ реализован в изготовлении болтов и пружин для авиакосмической техники, пружин, клапанов двигателей и подвесок автомобилей.

В таблице приведены результаты исследовании и испытаний механических свойств, конструктивной прочности материала и болтов, изготовленных из сплава ВТ 16 по предложенному способу в сравнении с известным способом.

Класс C22F1/18 тугоплавких или жаростойких металлов или их сплавов 

способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
способ изготовления заготовок из титана -  патент 2529131 (27.09.2014)
сплав на основе алюминида титана и способ обработки заготовок из него -  патент 2525003 (10.08.2014)
способ изготовления тонких листов -  патент 2522252 (10.07.2014)
способ изготовления поковок дисков из сплава алюминия титана на основе орто-фазы -  патент 2520924 (27.06.2014)
сплав на основе гамма алюминида титана -  патент 2520250 (20.06.2014)
способ изготовления каркасов искусственных клапанов сердца из технически чистого титана -  патент 2514765 (10.05.2014)
способ ковки термомеханической детали, выполненной из титанового сплава -  патент 2510680 (10.04.2014)
способ получения трубы из технически чистого титана с радиальной текстурой -  патент 2504598 (20.01.2014)
способ термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз -tial+ 2-ti3al -  патент 2503738 (10.01.2014)
Наверх