способ получения электроосажденных металлов с повышенными прочностными и пластическими свойствами

Классы МПК:C25D5/00 Электролитическое нанесение покрытий, характеризуемое способом; предварительная или последующая обработка изделий
C25D5/50 термообработкой
Автор(ы):, ,
Патентообладатель(и):Тюменский государственный нефтегазовый университет
Приоритеты:
подача заявки:
2000-10-23
публикация патента:

Изобретение относится к способам обработки металлов и может использоваться в гальваностегии и гальванопластике для улучшения свойств электроосажденных металлов. Электрокристаллизацией при плотностях тока 0,75-0,95 предельного значения формируют осадок с ячеистой структурой, а последующую термообработку проводят в течение 1,5-2,0 ч при температуре 0,13-0,14 температуры плавления, oС, металла осадка. За счет одновременного повышения прочностных и пластичных свойств улучшаются физико-механические характеристики материалов. 1 табл.
Рисунок 1

Формула изобретения

Способ получения электроосажденных металлов с повышенными прочностными и пластическими свойствами, включающий электрокристаллизацию и последующую термическую обработку, отличающийся тем, что электрокристаллизацией при плотностях тока 0,75-0,95 предельного значения формируют осадок с ячеистой структурой, а последующую термообработку проводят в течение 1,5-2,0 ч при температуре 0,13-0,14 температуры плавления, oС, металла осадка.

Описание изобретения к патенту

Изобретение относится к способам обработки деталей и может использоваться в гальваностегии и гальванопластике для улучшения свойств электроосажденных металлов.

Известно [1] , что свойства электролитических металлов определяются структурой осадка, которая зависит от условий их осаждения. Изменение свойств возможно также проведением последующей термообработки, служащей, как правило, для релаксации осадков и их дегазации [2], но вызывающей снижение прочностных характеристик. Такую термообработку (отжиг) проводят при температурах: железо - 150-200oС, никель - 200-250oС, медь - 160-250oС и т.д. в течение 1-3 часов.

Наиболее близким к заявляемому является способ термической обработки деталей с гальваническими никелевыми покрытиями, включающий многоступенчатый нагрев деталей до заданной температуры с изотермической выдержкой на каждой ступени [3].

Однако известный способ не предусматривает целенаправленное формирование электролизом структуры осадков, которая была бы восприимчива к последующим термическим воздействиям, обеспечивающим повышение не только пластических, но и прочностных свойств.

Задачей, на решение которой направлено заявляемое изобретение, является улучшение физико-механических характеристик материалов.

Поставленную задачу можно решить за счет достижения технического результата, который заключается в одновременном повышении прочностных и пластичных свойств электроосажденных металлов.

Указанный технический результат достигается тем, что в известном способе получения электроосажденных металлов, включающем электрокристаллизацию и последующую термическую обработку, особенностью является то, что электролиз осуществляют при плотностях тока 0,75-0,95 предельного значения (inp), формируя осадок с ячеистой структурой, последующую обработку которого проводят при температуре 0,13-0,14 его температуры плавления oC, в течение 1,5-2,0 ч.

Установлено [4] , что электролиз при низких плотностях тока (менее 0,75 inp) обеспечивает получение осадков со столбчатой структурой, имеющей выраженные субзеренные границы. Такая структура практически не претерпевает изменений при низкотемпературной термообработке, хотя частичная релаксация внутренних напряжений и удаление водорода повышает пластичность и несколько снижает прочностные характеристики. С другой стороны, электрокристаллизация покрытий на плотностях тока, больших 0,95 inp приводит к получению порошкообразных осадков, ограниченно пригодных к использованию в качестве компактных слоев. Наконец, электроосажденные металлы, полученные при (0,75-0,95) inp, имеют ячеистую структуру. Границы между ячейками, состоящими из объемов относительно свободных от дислокаций, представлены сплетениями дислокаций высокой плотности. Эти границы настолько широкие и размытые, что оказываются соизмеримыми с размерами ячеек. Ячеистая структура формируется при следующих плотностях тока, А/дм2: для никеля - 0,95-1,15; железа - 4,1-5,15; меди - 0,9-1,1; серебра - 0,85-1,0 и т.д. Эти значения входят в интервал (0,75-0,95)inp.

Поддерживание катодной плотности тока в заявляемых пределах с последующей термообработкой в способе получения электроосажденных металлов позволяют достичь улучшения физико-механических характеристик материалов за счет одновременного повышения и прочностных и пластичных свойств.

Совокупность существенных признаков, характеризующих изобретение, может быть многократно использована при реализации предлагаемого способа получения электроосажденных металлов с получением указанного технического результата.

Способ получения электроосажденных металлов с повышенными прочностными и пластическими свойствами осуществляют формированием осадка на традиционно подготовленную поверхность изделия, поддерживая катодную плотность тока в указанных пределах, а затем проводят заключительную термообработку (отжиг) в температурно-временных условиях данного способа.

Примеры реализации способа.

Металлы (никель, железо, медь) осаждали из промышленных электролитов при стационарных режимах электролиза на поверхность полированных пластин из нержавеющей стали. Никелевые осадки получали из сернокислого электролита с добавлением сахарина и 1,4-бутиндиола, to=40oС, рН 2; железные - из сульфатного электролита, to=60oС, рН 2,5; медные - из этилендиаминового электролита, to=25oС, pH 8,0. В качестве анодов при осаждении железа использовали армко-железо, в остальных случаях - платину. Отжиг осадков производили в вакууме 10-5 мм рт. ст. с фиксированием температурно-временных параметров. Тонкую структуру образцов контролировали в просвечивающем режиме на электронном микроскопе ЭВМ-100Л при ускоряющем напряжении 100кВ. Фольги для электронной микроскопии получали двухсторонней полировкой. Механические и микромеханические испытания проводили по стандартным методикам.

Пример 1.

Никелевый осадок, полученный при катодной плотности тока 1 А/дм2, подвергали, в соответствии с известным способом (прототип), отжигу по следующей схеме: 150oС, 3 ч; 200oС, 1 ч; 290oС, 1 ч; 360oС, 1 ч; 430oС, 1 ч. Механические свойства:

после электроосаждения HV 5 ГПа, способ получения электроосажденных металлов с повышенными   прочностными и пластическими свойствами, патент № 2183697, %=7;

после отжига HV 2,9 ГПа, способ получения электроосажденных металлов с повышенными   прочностными и пластическими свойствами, патент № 2183697, %=24.

Примеры 2-19. Никелевые, железные и медные осадки получали при различных плотностях тока. Механические характеристики осадков измеряли после электролиза и после отжига. Условия обработки и результаты измерений приведены в таблице.

Примеры реализации предлагаемого способа получения электроосажденных металлов с повышенными прочностными и пластическими свойствами показывают его преимущества в сравнении с известными.

Предлагаемое техническое решение может быть использовано при изготовлении изделий методом гальванопластики и нанесении гальванических покрытий на деталях широкой номенклатуры.

Источники информации

1. Лайнер В. И. Современная гальванотехника. М.: Металлургия, 1967, с. 15-17.

2. Садаков Г.А. Гальванопластика. - М.: Машиностроение, 1987, 288 с.

3. А.с. 1474182 СССР, МПК 4 С 25 D 5/50, опубл. 1989 (прототип).

4. Ковенский И. М., Поветкин В.В., Матвеев Н.И. Об изменении структуры электроосажденных металлов при отжиге // Известия АН СССР. Металлы. - 1989. 2, с. 97-103.

Класс C25D5/00 Электролитическое нанесение покрытий, характеризуемое способом; предварительная или последующая обработка изделий

способ получения пластичной структуры поверхностного слоя на переднем выступе ствольной коробки стрелкового оружия -  патент 2524268 (27.07.2014)
листовая сталь для горячего штампования и способ изготовления горячештампованной детали с использованием листовой стали для горячего штампования -  патент 2520847 (27.06.2014)
способ нанесения антикоррозийных покрытий на подложку из высокотвердых сплавов -  патент 2519694 (20.06.2014)
способ и установка для обработки изделия -  патент 2515718 (20.05.2014)
способ изоляции поверхностей деталей, не подлежащих анодному окислению -  патент 2506351 (10.02.2014)
устройство для гальваномеханического осаждения покрытий -  патент 2503753 (10.01.2014)
электропроводящий термопластичный материал для гальванопластики -  патент 2502768 (27.12.2013)
хромированная деталь (варианты) и способ ее изготовления -  патент 2500839 (10.12.2013)
способ получения градиентного каталитического покрытия -  патент 2490372 (20.08.2013)
способ нанесения упрочняющего покрытия -  патент 2484180 (10.06.2013)

Класс C25D5/50 термообработкой

способ получения пластичной структуры поверхностного слоя на переднем выступе ствольной коробки стрелкового оружия -  патент 2524268 (27.07.2014)
способ нанесения композиционных электрохимических покрытий -  патент 2482225 (20.05.2013)
способ обработки детали с гальваническим покрытием -  патент 2476626 (27.02.2013)
способ нанесения комбинированного защитного покрытия на стальные детали -  патент 2427671 (27.08.2011)
способ получения прочносцепленных покрытий на основе никеля на металлических деталях -  патент 2389829 (20.05.2010)
способ получения гальванического покрытия сплавами на основе никеля на хромсодержащих материалах -  патент 2355827 (20.05.2009)
способ получения диффузионных покрытий на стали -  патент 2223350 (10.02.2004)
способ изготовления деталей с твердым электрохимическим хромовым покрытием -  патент 2180022 (27.02.2002)
способ получения термоупрочняемых хромовых покрытий -  патент 2147630 (20.04.2000)
способ обработки изделий из алюминия и его сплавов (варианты) -  патент 2096533 (20.11.1997)
Наверх