геттерный насос квантового водородного генератора
Классы МПК: | F04B37/14 для достижения глубокого вакуума F04B37/02 для создания вакуума путем абсорбции и адсорбции |
Автор(ы): | Байков В.Е. |
Патентообладатель(и): | Закрытое акционерное общество "ВРЕМЯ-Ч" |
Приоритеты: |
подача заявки:
2001-06-13 публикация патента:
20.06.2002 |
Насос предназначен для использования при изготовлении квантовых водородных генераторов. Геттерный насос для квантового водородного генератора содержит в качестве сорбента (поглотителя) прессованную тонкую титановую стружку, в которую добавлен сплав лантан-никеля 5 (LaNi5) в количестве 10-15% от массы титановой стружки. Повышается эффективность и надежность эксплуатации квантового генератора. 1 з.п. ф-лы.
Формула изобретения
1. Геттерный насос квантового водородного генератора, содержащий в качестве сорбента прессованную тонкую титановую структуру, отличающийся тем, что в прессованную титановую стружку добавлен сплав лантан-никеля 5. 2. Геттерный насос по п.1, отличающийся тем, что сплав лантан-никеля 5 составляет 10-15% от массы титановой стружки.Описание изобретения к патенту
Изобретение относится к вакуумной технике, а именно к сорбционным (геттерным) насосам, и может быть использовано в вакуумных системах водородных стандартов частоты. В квантовом водородном генераторе формируется пучок атомов водорода, который подвергается сортировке по состояниям и одновременной фокусировке с помощью сортирующей системы ("Стандарты частоты и времени на основе квантовых генераторов и дискриминаторов" под ред. Б.П. Фатеева, М., изд. "Сов. Радио", с. 70). Основными элементами квантового водородного генератора являются источник атомарного водорода, магнитная сортирующая система, резонатор с накопительной колбой и магнитными экранами, вакуумная система. Наиболее высокие требования предъявляются к откачке накопительной колбы, то есть к вакуумной системе. В накопительной колбе обеспечивается давление не более (1-3)10-6 Па, в резонаторе 1,310-4 Па, в источнике 1,310 Па. Поток рабочих атомов водорода составляет 3,310-6м3 Па/с. Для обеспечения требуемого давления в накопительной колбе (1-3)10-6 Па скорость откачки насоса должна быть не менее (1-3) м3/с. При приемлемых габаритах такую скорость откачки может обеспечить только сорбционный насос. Откачивающими средствами для создания вакуума в камерах являются магниторазрядные и сорбционный (геттерный) насосы, как например в водородном стандарте частоты и времени типа Ч1-75, взятом в качестве прототипа предлагаемого изобретения (см. "Кварцевые и квантовые меры частоты" под ред. Макаренко Б. И., М., Мин.обороны СССР, 1989 г., с. 358, рис.6.13б). Сорбционные (геттерные) насосы были созданы с целью уменьшения габаритов вакуумной системы и повышения эксплуатационных характеристик квантовых генераторов. Такие насосы после их активации в высоком вакууме при температуре 700-800oС способны поглощать в большом количестве водород. В качестве сорбента в них используются прессованная тонкая титановая стружка или фольга. Такие насосы занимают небольшой объем и не потребляют при работе энергии. Но недостатком таких конструкций является то, что титан, обладая высокой энергией связи с водородом, медленно поглощает водород, что снижает скорость сорбции. В то же время скорость сорбции должна превышать скорость потока атомов водорода для обеспечения требуемого давления в накопительной колбе. Для решения этой задачи можно увеличить поверхность титановой стружки, но это приводит к увеличению плотности сорбционной поверхности и затруднению проникновения водорода. Технической задачей изобретения является повышение скорости сорбции водорода геттерным насосом для эффективной и надежной эксплуатации квантовых водородных генераторов. Решение технической задачи заключается в том, что в геттерном насосе для квантового водородного генератора, содержащем в качестве сорбента прессованную тонкую титановую стружку, в стружку добавляется интерметаллид сплав лантан-никеля 5 (LaNi5). Сплав лантан-никеля составляет 10-15% от массы титановой стружки. Геттерный насос конструктивно, так же как и прототип, разделен на две секции - верхнюю и нижнюю. Секции сообщаются между собой пролетным каналом сортирующего магнита. Верхняя секция содержит около 300 г, а нижняя секция около 700 г геттера: прессованной стружки титана и порошка LaNi5. На разделительной перегородке секций смонтирован нагреватель для активации геттера путем нагрева до температуры около 800oС в высоком вакууме (Р <110-5 Па). Процесс выполнения геттерного поглотителя состоит в следующем. Из титановой заготовки делается стружка толщиной 0,05 мм и шириной 0,5 мм. Стружка предварительно прессуется в виде таблеток, затем на их верхнюю и нижнюю поверхности наносится мелкодисперсный порошок сплава LaNi5 в количестве 10-15% от массы титановой стружки, и производят окончательное прессование гидропрессом до необходимых размеров и отжиг в вакууме при температуре 850oС. Сплав LaNi5 обладает высокой скоростью сорбции водорода и относительно низкой энергией связи с водородом, поэтому сплав LaNi5 захватывает водород и быстро "отдает" его титану, увеличивая скорость сорбции геттерного насоса для водорода. Изобретение может быть использовано при изготовлении геттерных насосов для квантовых водородных генераторов для использования их в водородных стандартах частоты при работе их в качестве источников высокостабильных сигналов.Класс F04B37/14 для достижения глубокого вакуума
установка для преобразования энергии нагретого газа в вакуум - патент 2307259 (27.09.2007) | |
вакуумная установка - патент 2159357 (20.11.2000) | |
способ получения вакуума - патент 2116508 (27.07.1998) | |
устройство для регулирования вакуумного разрежения - патент 2110698 (10.05.1998) | |
вакуумная установка - патент 2023910 (30.11.1994) |
Класс F04B37/02 для создания вакуума путем абсорбции и адсорбции