способ изготовления керамических топливных таблеток ядерных реакторов

Классы МПК:G21C21/00 Способы или устройства, специально предназначенные для изготовления реакторов или их частей
G21C3/02 топливные элементы 
C01G43/025 диоксид урана
Автор(ы):, , ,
Патентообладатель(и):Московский государственный инженерно-физический институт (технический университет),
Открытое акционерное общество "ТВЭЛ"
Приоритеты:
подача заявки:
2000-07-10
публикация патента:

Использование: в технологиях производства спеченных керамических топливных таблеток для ядерных реакторов, содержащих делящиеся материалы. Сущность изобретения: способ включает прессование и спекание таблеток из порошка диоксида урана, до прессования к порошку UO2 с удельной поверхностью частиц не менее 2,0 м2/г добавляют ультрадисперсный порошок UO2 со средним размером кристаллов, не превышающим длины диффузии вакансии урана за время выдержки спрессованной таблетки при температуре спекания, в количестве до 30% в полученной смеси. Техническим результатом является снижение температуры спекания с сохранением предъявляемых требований по плотности и микроструктуре. 1 табл.
Рисунок 1

Формула изобретения

Способ изготовления керамических топливных таблеток ядерных реакторов, включающий их прессование и спекание из порошка диоксида урана, отличающийся тем, что до прессования к порошку UО2 с удельной поверхностью частиц не менее 2,0 м2/г добавляют ультрадисперсный порошок UO2 со средним размером кристаллитов, не превышающим длины диффузии вакансии урана за время выдержки спрессованной таблетки при температуре спекания, в количестве до 30% в полученной смеси.

Описание изобретения к патенту

Изобретение относится к технологии производства спеченных керамических топливных таблеток для ядерных реакторов, содержащих делящиеся материалы.

При производстве топливных таблеток для ядерных реакторов используются такие операции, как подготовка пресс-порошка диоксида урана, прессование таблеток, их спекание и шлифование.

Существует способ получения топливных таблеток, в котором порошок диоксида урана получают через аммонийуранилтрикарбонат (АУК-процесс) [1]. К недостаткам этого способа следует отнести низкую плотность прессованных таблеток, близкую к нижнему пределу - около 10,4 г/см3, а также высокую температуру спекания полученных таблеток.

Наиболее близким по технической сущности является способ получения топливных таблеток, в котором порошок диоксида урана получают через полиуранат аммония (АДУ-процесс) [2] . Полученный порошок с размером от 4 до 30 мкм прессуют в таблетки, спекают и шлифуют. Недостатком данного способа является высокая температура спекания таблеток от 1650 до 1750oС, что в свою очередь приводит к большим энергозатратам и снижению ресурса печей.

Техническим результатом, на достижение которого направлено данное изобретение, является снижение температуры спекания при изготовлении топливных таблеток с сохранением предъявляемых требований по плотности и микроструктуре.

Сущность предлагаемого способа заключается в том, что для прессования таблеток используют смесь порошка диоксида урана (Ст), приготовленного по одной из известных технологий [3] с удельной поверхностью частиц не менее 2,0 2/г, и ультрадисперсного (УД) порошка UО2, размеры которого сопоставимы с такими физическими величинами, как пробеги электронов или фононов, длина дислокации [4]. Частицы УД порошка, средний размер которых не превышает длину диффузии вакансии урана за время выдержки спрессованной таблетки при температуре спекания, окружающие более крупные частицы Ст порошка, будут играть роль диффузионных мостов между ними. Их диффузионное сцепление будет обеспечиваться не только пятнами взаимного контакта, но и ультрадисперсной фазой. При этом заполнение пустот в частицах Ст порошка мелкими частицами УД порошка приведет к содержанию в смеси УД порошка до 30%.

Для проверки предлагаемого способа изготовлено пять партий таблеток с различным содержанием ультрадисперсного порошка.

УД порошок диоксида урана получали методом осаждения полиуранита аммония (ПУА) при комнатной температуре из раствора уранилнитрата с концентрацией урана 80 г/л. Осаждение проводили по методу "последней капли" - совместным сливанием аммиачной воды и раствора нитрата уранила в буферный раствор. Значение рН системы поддерживали равным 9,0. Осаждение длилось 3,5 часа, агитация пульпы 0,5 часа. Отфильтрованный осадок ПУА промывали и сушили. Порошок диоксида урана получали путем восстановления ПУА при температуре 620oС в восстановительной среде.

Для получения стандартного порошка осаждение ПУА проводили в две стадии: при рН 6,8 в течение 5 часов с доосаждением при рН 8,0. Высушенную соль прокаливали при температуре 680oС до закиси-окиси урана, затем восстанавливали до диоксида урана. Физико-химические характеристики Ст и УД порошков приведены в таблице.

УД порошок в количестве, %: 10, 20, 30 и 100 добавляли в Ст и смешивали в течение 3 часов в смесителе типа "пьяная бочка" (n=15 об/мин). В качестве пластификатора добавляли 6%-ный водный раствор поливинилового спирта в количестве 10 мас.%. Смеси однократно гранулировали при давлении 1 тс/см2, измельчали, протирали через сито с размером ячейки 1 мм и прессовали в таблетку при давлении 1,9 тc/см2. Диаметр матрицы пресс-формы составлял 9,34 мм. С целью удаления влаги и поливинилового спирта спрессованные таблетки подвергали термообработке в токе водорода при температуре 750oС, продолжительность выдержки при максимальной температуре составляла 1,5 ч. Таблетки охлаждали в токе водорода до комнатной температуры. Спекание таблеток проводили в восстановительной среде при температурах, oС: 1700, 1600, 1500 и 1400. Скорость нагревания и охлаждения составляла от 250 до 300 град/ч.

Состав смесей, параметры спекания и основные характеристики получаемых таблеток представлены в таблице.

При всех испытанных режимах спекания использование только УД порошка не дает положительного эффекта. Получаемые таблетки не удовлетворяют требованиям по плотности.

При использовании только Ст порошка положительный эффект, как и в условиях массового производства достигается при температурах выше 1600oС. Увеличение содержания УД порошка в смеси до 30% приводит к уменьшению плотности таблеток. При таком содержании УД порошка таблетки, удовлетворяющие требованиям технических условий, получаются при температуре спекания 1400oС. Таким образом, проведенные исследования показывают, что использование предлагаемого способа позволяет снизить температуру спекания по сравнению с существующей технологией производства таблеток по крайней мере на 300oС без ухудшения их качества.

Использование предлагаемого способа приведет к сокращению энергозатрат при спекании таблеток на 15-20%. Кроме экономии электроэнергии за счет уменьшения температуры эксплуатации снижаются требования к оборудованию печей спекания, повышается их надежность. Возможна, например, замена дорогих нагревателей из сплавов молибдена на более дешевые.

Источники информации

1. Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов. М.: Энергоатомиздат, 1995, стр. 68-72.

2. Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов. М.: Энергоатомиздат, 1995, стр. 66-67.

3. Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов. М.: Энергоатомиздат, 1995, стр. 66-84.

4. Морохов И. Д. , Петинов В.И., Петрунин В.Ф. и др. Успехи физических наук, 1981, т. 133, стр. 24-29.

Класс G21C21/00 Способы или устройства, специально предназначенные для изготовления реакторов или их частей

способ дистанционирования твэлов в тепловыделяющей сборке -  патент 2528952 (20.09.2014)
соединительное устройство для системы наполнения банок для изготовления ядерного топлива -  патент 2525086 (10.08.2014)
способ изготовления трубчатых тепловыделяющих элементов, преимущественно шестигранной формы -  патент 2525030 (10.08.2014)
способ изготовления трубчатых тепловыделяющих элементов -  патент 2524156 (27.07.2014)
способ изготовления газонаполненного тепловыделяющег элемента -  патент 2513036 (20.04.2014)
тепловыделяющая сборка ядерного реактора -  патент 2510538 (27.03.2014)
способ прессования заготовок керметных стержней -  патент 2508572 (27.02.2014)
способ изготовления топливных стержней -  патент 2507616 (20.02.2014)
способ изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов -  патент 2504032 (10.01.2014)
контейнер для горячего изостатического прессования заготовок стержней топливного сердечника керметного твэла ядерного реактора -  патент 2498428 (10.11.2013)

Класс G21C3/02 топливные элементы 

композиционный топливный модельный материал с инертной пористой металлической матрицей и способ его изготовления -  патент 2522744 (20.07.2014)
способ изготовления таблетки ядерного керамического топлива -  патент 2504029 (10.01.2014)
инициатор деления ядер -  патент 2483371 (27.05.2013)
способ изготовления керамических топливных таблеток для тепловыделяющих элементов ядерного реактора -  патент 2421834 (20.06.2011)
способ соосаждения актиноидов с разной степенью окисления и способ получения смешанных соединений актиноидов -  патент 2408537 (10.01.2011)
тепловыделяющий элемент, рабочая кассета и водо-водяной энергетический реактор тепловой мощностью от 1150 до 1700 мвт -  патент 2381576 (10.02.2010)
тепловыделяющий элемент реактора -  патент 2360305 (27.06.2009)
способ исследования радиационного поведения микротвэлов ядерного реактора -  патент 2357302 (27.05.2009)
твэл ядерного реактора -  патент 2347289 (20.02.2009)
пластинчатое ядерное топливо, содержащее регулярно размещенные крупные сферические частицы сплава u-mo или u-mo-x, и способ их изготовления -  патент 2317599 (20.02.2008)

Класс C01G43/025 диоксид урана

способ получения порошков нитрида урана -  патент 2522814 (20.07.2014)
способ получения диоксида урана -  патент 2522619 (20.07.2014)
способы приготовления оксалата актиноидов и приготовления соединений актиноидов -  патент 2505484 (27.01.2014)
способ изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов -  патент 2504032 (10.01.2014)
способ получения сферических частиц горючего или ядерного топлива -  патент 2459766 (27.08.2012)
способ получения твердого раствора диоксида плутония в матрице диоксида урана -  патент 2446107 (27.03.2012)
способ получения порошка диоксида урана -  патент 2415084 (27.03.2011)
способ получения порошка диоксида урана методом пирогидролиза и установка для его осуществления -  патент 2381993 (20.02.2010)
способ изготовления таблетированного топлива для тепловыделяющих элементов ядерного реактора и линия для осуществления способа -  патент 2344502 (20.01.2009)
способ получения таблетированного топлива на основе порошка диоксида урана -  патент 2296106 (27.03.2007)
Наверх