способ изготовления источников ионизирующих излучений для аппаратов дистанционного введения

Классы МПК:G21G4/04 радиоактивные источники, кроме источников нейтронов
A61N5/10 рентгенотерапия; гамма-лучевая терапия; терапия облучением элементарными частицами
Автор(ы):, , ,
Патентообладатель(и):Государственный научный центр РФ - Научно-исследовательский институт атомных реакторов
Приоритеты:
подача заявки:
2000-08-18
публикация патента:

Изобретение относится к ядерной технике, преимущественно к области изготовления источников ионизирующих излучений, используемых в медицине. Способ включает изготовление сборки, состоящей из капсулы и троса с наконечником, покрытие сердечника малоактивирующимся в реакторе покрытием, активацию сердечника в реакторе, загрузку его в капсулу и герметизацию. Причем для приготовления капсулы используют трубку нержавеющей стали, например 12Х18Н10Т. В качестве сердечника источников применяют радионуклиды иридия-192, кобальта-60. Технический результат - увеличение механической прочности капсулы, создание экологически безопасных условий изготовления источников, обеспечение надежного и герметичного соединения трубки с тросом. 3 з.п. ф-лы.

Формула изобретения

1. Способ изготовления источников ионизирующего излучения для аппаратов дистанционного введения, заключающийся в том, что изготавливают сборку, состоящую из капсулы и троса с наконечником, причем для изготовления капсулы используют трубку из нержавеющей стали, к которой через шайбу приваривают трос, покрывают сердечник малоактивирующимся в реакторе покрытием, активируют сердечник в реакторе, загружают сердечник в капсулу и герметизируют.

2. Способ по п.1, отличающийся тем, что для надежного и герметичного соединения трубки с тросом его выполняют в три этапа: вначале к шайбе приваривают центральную жилу, затем боковую оплетку троса, а полученную сборку приваривают в торец трубки.

3. Способ по п.1, отличающийся тем, что используют трубку из нержавеющей стали, например, 12Х18Н10Т.

4. Способ по п.1, отличающийся тем, что в качестве сердечника источников используют радионуклиды иридия-192, кобальта-60, имеющих поверхностную загрязненность не более 2000 Бк.

Описание изобретения к патенту

Изобретение относится к ядерной технике и преимущественно к области изготовления источников ионизирующих излучений, используемых в медицине.

В рекламном проспекте фирмы "Gammamed"/Isotopentichnik Dr Sauerwein GMBH/ эскизно показан способ изготовления источников иридия-192 для аппаратов дистанционного введения диаметром 1,1 мм, в котором сердечник иридия-192 загерметизирован в капсулу из нержавеющей стали длиной 5,1 мм.

Для обеспечения возможности доставки источника в зону облучения во время проведения лечебных процедур к капсуле приваривается гибкий трос комбинированной навивки с наконечником диаметром 1-1,1 мм, длиной до 2100 мм.

Технология изготовления таких источников предполагает выполнение следующих операций:

- изготовление капсулы длиной 5-5,1 мм, диаметром 1,1 мм с внутренней полостью глубиной 4,1-4,6 мм, диаметром 0,7 мм;

- приварка в торец капсулы гибкого троса диаметром 1-1,1 мм с наконечником;

- изготовление заготовки сердечника иридия способ изготовления источников ионизирующих излучений для   аппаратов дистанционного введения, патент № 2187159х1=0,6х3,5 мм и активация его в реакторе до активности 12 Ки (444 ГБк);

- загрузка сердечника в капсулу сборки (капсула + трос) и герметизация источника.

Данный способ изготовления источника имеет ряд недостатков:

1. Технически трудно изготовить капсулу способ изготовления источников ионизирующих излучений для   аппаратов дистанционного введения, патент № 2187159х1=1,1х5,1 мм, имеющую внутреннее сверление диаметром 0,7 мм на глубину 4,1-4,6 мм. При изготовлении ее невозможно обеспечить постоянную толщину стенок капсулы 0,2 мм, так как любой режущий инструмент диаметром 0,6-0,7 мм будет давать значительно большее биение. При плазменной обработке в данной части капсулы будет образовываться уширение грушевидной формы, что приведет к уменьшению толщины стенок и снижению механической прочности капсулы.

2. Приварка лазером троса с наконечником в торец капсулы обеспечивает надежное крепление отдельных жил наружной оплетки троса, но не гарантирует полного проплавления его на глубину 500 мкм, что может привести к разрушению сварного соединения и отрыву источника в процессе его эксплуатации.

3. При облучении заготовки сердечника иридия в реакторе происходит отслаивание чешуек иридия с поверхности заготовок. Это приведет к тому, что при сборке источника возможно сильное загрязнение наружных поверхностей составляющих источника, что создает серьезные проблемы при последующей дезактивации его.

В данной области технике ближайшего аналога предлагаемого способа не найдено.

Вышеуказанных недостатков лишен предлагаемый способ изготовления источников ионизирующих излучений для аппаратов дистанционного введения, включающий операции изготовления сборки (наконечник + трос + капсула), активации сердечника в реакторе, загрузки сердечника в капсулу и ее герметизацию, для изготовления капсулы используют цельнотянутую трубку диаметром 1-1,6 мм нержавеющей стали, например 12Х18Н10Т, в торец которой лазером приваривают шайбу специальной конструкции, к которой предварительно приваривают лазером трос с наконечником, изготавливают заготовки сердечника, покрывают его защитным покрытием, активируют в реакторе, затем герметизируют в капсуле.

Для обеспечения надежного соединения трубки с шайбой и тросом сварка выполняется в 3 этапа. Вначале к шайбе приваривают центральную жилу, затем боковую оплетку троса и полученную сборку приваривают в торец трубки.

Для обеспечения экологически безопасных условий изготовления источников иридия-192, кобальта-60 на заготовки сердечников перед облучением их в реакторе наносят защитное покрытие толщиной до 30 мкм из материалов, надежно защищающих поверхность сердечника, но малоактивирующихся в реакторе. Использование этого приема позволяет получать сердечники, после активации их в реакторе, с поверхностной загрязненностью не более 2000 Бк, а источники после сборки и минимальных затрат на дезактивацию с загрязненностью менее 185 Бк.

Класс G21G4/04 радиоактивные источники, кроме источников нейтронов

способ получения стронция-82 -  патент 2522668 (20.07.2014)
радионуклидный источник излучения для радиационной гамма-дефектоскопии -  патент 2499312 (20.11.2013)
способ получения натрия-22 из облученной протонами алюминиевой мишени -  патент 2489761 (10.08.2013)
способ получения генераторного радионуклида рений-188 -  патент 2481660 (10.05.2013)
способ изготовления источников на основе радионуклида, выбранного из группы щелочноземельных элементов -  патент 2454744 (27.06.2012)
способ получения источников гамма-излучения на основе радионуклида 74se для гамма-дефектоскопии -  патент 2444074 (27.02.2012)
способ изготовления альфа-радиоактивных источников -  патент 2397562 (20.08.2010)
ампула облучательного устройства ядерного реактора -  патент 2342716 (27.12.2008)
способ изготовления источника позитронов -  патент 2278431 (20.06.2006)
способ изготовления тритиевого источника -излучения -  патент 2257628 (27.07.2005)

Класс A61N5/10 рентгенотерапия; гамма-лучевая терапия; терапия облучением элементарными частицами

способ оценки эффекта электромагнитных волн миллиметрового диапазона (квч) в эксперименте -  патент 2529694 (27.09.2014)
способ получения керамики из оксида иттербия -  патент 2527362 (27.08.2014)
аппарат для дистанционной нейтронной терапии -  патент 2526244 (20.08.2014)
способ комплексного лечения ранних стадий плоскоклеточного рака анального канала -  патент 2524419 (27.07.2014)
способ выбора тактики лечения местно-распространенного рака предстательной железы -  патент 2524309 (27.07.2014)
способ лечения раковых опухолей -  патент 2524194 (27.07.2014)
терапевтическое устройство -  патент 2522384 (10.07.2014)
способ облучения патологий человеческого организма и устройство для его осуществления (варианты) -  патент 2519772 (20.06.2014)
способ трансуретральной резекции предстательной железы, предшествующий брахитерапии рака простаты -  патент 2519407 (10.06.2014)
способ и система для брахитерапии -  патент 2515527 (10.05.2014)
Наверх