способ получения дициклогексилдисульфида

Классы МПК:C07C319/14 сульфидов
C07C321/16 насыщенного углеродного скелета, содержащего кольца
Автор(ы):, , , , , ,
Патентообладатель(и):Волгоградское открытое акционерное общество "Химпром"
Приоритеты:
подача заявки:
2001-02-21
публикация патента:

Изобретение относится к способу получения дициклогексилдисульфида (ДЦГДС), применяющегося в качестве целевой добавки к резинам, пластмассам, краскам, сельскохозяйственным и фармацевтическим химикатам и в качестве исходного сырья для синтеза циклогексилсульфенилхлорида. ДЦГДС получают взаимодействием хлорциклогексана с дисульфидом натрия. Процесс осуществляют при 90-98oС при мольном соотношении хлорциклогексан: дисульфид натрия в пределах 1 : 0,83-0,9 с использованием в качестве дисульфида натрия водного раствора с массовой долей дисульфида натрия в пределах 7-22%, а в качестве органического растворителя используют гептан или смесь алифатических и нафтеновых углеводородов, перегоняющихся в пределах 80-120oС. Растворитель используют в количестве 10-25% от массы хлорциклогексана. В качестве поверхностно-активного вещества используют соединение, выбранное из группы: полиэтиленгликоль, эмульгатор С-10, оксиэтилированные алкил- и диалкилфенолы, полиэтиленгликолевые эфиры моноалкилфенолов, в количестве 0,5-2,0% от массы хлорциклогексана. В качестве водного раствора дисульфида натрия (7-10 мас.%) используют также раствор, получающийся взаимодействием гидроксида натрия и серы при мольном соотношении 1 : 0,59-0,79 в водной среде при 90-95oС. Настоящий способ позволяет увеличить выход целевого продукта на 0,7-13,8%. 5 з. п.ф-лы, 1 табл.
Рисунок 1

Формула изобретения

1. Способ получения дициклогексилдисульфида взаимодействием хлорциклогексана с дисульфидом натрия в двухфазной системе органический растворитель - водная фаза в присутствии поверхностно-активного вещества при повышенной температуре, отличающийся тем, что взаимодействие осуществляют при 90-98oС при мольном соотношении хлорциклогексан: дисульфид натрия в пределах 1: 0,83-0,90 и в качестве дисульфида натрия используют водный раствор с массовой долей дисульфида натрия в пределах 7-22%.

2. Способ по п.1, отличающийся тем, что в качестве органического растворителя используют гептан или смесь алифатических и нафтеновых углеводородов, перегоняющихся в пределах 80-120oС при атмосферном давлении.

3. Способ по любому из пп.1 и 2, отличающийся тем, что в качестве поверхностно-активного вещества используют соединение, выбранное из группы: полиэтиленгликоль, эмульгатор C-10, оксиэтилированные алкил- и диалкилфенолы, например, вспомогательные вещества ОП-7 или ОП-10, полиэтиленгликолевые эфиры моноалкилфенолов.

4. Способ по любому из пп.1-3, отличающийся тем, что используют поверхностно-активное вещество в количестве 0,5-2,0% от массы хлорциклогексана.

5. Способ по любому из пп.1-4, отличающийся тем, что используют органический растворитель в количестве 10-25% от массы хлорциклогексана.

6. Способ по любому из пп.1-5, отличающийся тем, что в качестве водного раствора дисульфида натрия используют раствор с массовой долей дисульфида натрия 7-10%, получающийся взаимодействием гидроксида натрия и серы при мольном соотношении 1:0,59-0,79 в водной среде при 90-95oС.

Описание изобретения к патенту

Изобретение относится к технологии получения органических сероcoдержaщиx соединений, а именно к способу получения дициклогексилдисульфида, применяющегося в качестве добавки к резинам, пластмассам, поверхностно-активным веществам, краскам, сельскохозяйственным и фармацевтическим химикатам и являющегося промежуточным продуктом для синтеза циклогексилсульфенилхлорида.

Известен способ получения дициклогексилдисульфида (ДЦГДС) взаимодействием хлорциклогексана и дисульфида щелочного металла или смеси сульфида металла с серой в водно-спиртовой или спиртовой среде при 40-80oС [Заявка 59-122456 Японии, 1984, МКИ3 С 07 С 149/26, С 07 С 148/00].

Недостатками этого способа являются относительно невысокий выход целевого продукта и необходимость выделения или удаления растворителя как из продукта реакции, так и из водно-спиртового раствора.

Наиболее близким к предлагаемому по технической сущности является способ получения дициклогексилдисульфида взаимодействием непосредственно хлорциклогексана (бром или иодциклогексана) или циклогексилгалогенида, растворенного в органическом растворителе при массовом или объемном соотношении от 99:1 до 1: 99, с дисульфидом общей формулы MS2, где M=Na2, К2, Li2, (NH4)2, NaH, КН, LiH, (NH4)H, Ca, Ba, Mg, Zn, Fe, растворенным в воде или водно-органической среде, при мольном соотношении реагентов от 1:99 до 99:1 при температуре от комнатной до температуры кипения реакционной смеси в присутствии поверхностно-активного вещества (ПАВ) преимущественно неионного характера, взятого в количестве 0,001-50% от количества циклогексилгалогенида самостоятельно или в смеси с пеногасящим агентом при их массовом соотношении от 1:99 до 99:1 [Авт. свид. 230861 ЧССР, 1986, МКИ3 С 07 С 149/26].

Недостатками этого способа являются относительно невысокий выход ДЦГДС (52,7-84,1%) и использование достаточно дефицитных или высококипящих органических растворителей, например тетрахлорметана, хлороформа, метиленхлорида, хлорбензола, 1,2-дихлорбензола, сложных эфиров карбоновых кислот, диоксана, диэтилового эфира, спиртов C16, кетонов С36), что определяет повышенные энергозатраты для их удаления из целевого продукта и регенерации.

Задачей предлагаемого изобретения является увеличение выхода целевого продукта и упрощение технологии за счет использования более доступных органических растворителей.

Это достигается тем, что взаимодействие хлорциклогексана (ХЦГ) с дисульфидом натрия осуществляют в двухфазной системе в присутствии ПАВ при 90-98oС при мольном соотношении хлорциклогексан : дисульфид натрия в пределах 1:0,83-0,90 и в качестве дисульфида натрия используют водный раствор с массовой долей дисульфида натрия в пределах 7-22%. В качестве органического растворителя используют гептан или смесь алифатических и нафтеновых углеводородов, перегоняющихся при атмосферном давлении в пределах 80-120oС. В качестве ПАВ используют соединение, выбранное из группы: полиэтиленгликоль, эмульгатор С-10, оксиэтилированные алкил- и диалкилфенолы, например вспомогательные вещества ОП-7 или ОП-10, полиэтиленгликолевые эфиры моноалкилфенолов. Количество ПАВ составляет 0,5-2,0% от массы ХЦГ. Количество используемого органического растворителя составляет 10-25% от массы ХЦГ. В качестве водного раствора дисульфида натрия используют также раствор с массовой долей дисульфида натрия 7-10%, получающийся взаимодействием гидроксида натрия и серы при мольном соотношении 1:0,59-0,79 в водной среде при температуре 90-95oС.

Указанный температурный интервал (90-98oС) является оптимальным, поскольку при более низкой температуре заметно снижается скорость процесса, а при более высокой уменьшаются выход целевого продукта и селективность процесса. Указанное мольное соотношение реагентов является оптимальным ввиду того, что при меньшем количестве исходного дисульфида натрия снижаются конверсия хлорциклогексана и выход целевого продукта. Приведенное количество органического растворителя является оптимальным, поскольку при большем количестве падает производительность процесса и увеличиваются затраты на регенерацию растворителя, а при меньшем ухудшается деление фаз по окончании синтеза.

Указанное количество ПАВ (0,5-2,0% от массы ХЦГ) является оптимальным, поскольку при меньшем количестве снижается скорость взаимодействия реагентов, а использование большего количества ПАВ технически и экономически нецелесообразно.

Изобретение иллюстрируют следующие примеры.

Пример 1 (типовая методика)

В трехгорлый реактор, снабженный мешалкой, термометром и обратным холодильником, помещают 273,2 г водного раствора дисульфида натрия с массовой долей Na2S2 21,52%, 72,42 г хлорциклогексана, 1,1 г вспомогательного вещества ОП-7 и 12,94 г органического растворителя гептана или бензина БР-1 или БР-2 (ГОСТ 443-76). Реакционную массу нагревают до 90-98oС и перемешивают при этой температуре в течение 12-18 часов. После охлаждения, фильтрации и деления фаз получают 77,1 г органического слоя, содержащего 59,4 мас.% ДЦГДС.

Дициклогексилдисульфид выделяют из органического слоя, отгоняя при атмосферном давлении растворитель и легкокипящие примеси, а при пониженном давлении - непрореагировавший ХЦГ (7,1 г). Получают 48,47 г кубового остатка, который представляет собой целевой продукт с массовой долей ДЦГДС 94,0%. Выход ДЦГДС по вступившему в реакцию хлорциклогексану составляет 73,5%.

Пример 2

Синтез проводят аналогично описанному выше исходя из 571,43 г 10,5%-ного водного раствора дисульфида натрия, 74,82 г хлорциклогексана, 0,4 г эмульгатора С-10 и 18,72 г гептана. После перемешивания при 90-98oС в течение 18 часов и обработки реакционной массы, как описано выше, получают 48,7 г дициклогексилдисульфида с содержанием основного вещества 92,5 мас. %. Выход целевого продукта составляет 70,5% на прореагировавший ХЦГ.

Пример 3

В трехгорлый реактор, снабженный мешалкой, термометром и обратным холодильником помещают 200,0 г 13,5%-ного водного раствора гидроксида натрия, 17,1 г серы и при температуре 90-95oС перемешивают до полного растворения серы. Получают 217,1 г 7,3%-ного водного раствора дисульфида натрия. Затем к этому раствору добавляют 19,25 г хлорциклогексана, 2,83 г гептана и 0,1 г смеси полиэтиленгликолевых эфиров моноалкилфенолов (неонола марки АФ 9-10). Реакционную массу перемешивают в течение 15 часов при температуре 90-98oС. После охлаждения и деления фаз получают 19,9 г органического слоя, содержащего 70,2 мас. % ДЦГДС. Дициклогексилдисульфид выделяют из органического слоя, отгоняя при атмосферном давлении растворитель и легкокипящие примеси, а при пониженном давлении - непрореагировавший хлорциклогексан (1,5 г). Получают 15,19 г кубового остатка, который представляет собой целевой продукт с массовой долей ДЦГДС 92%. Выход ДЦГДС по вступившему в реакцию хлорциклогексану 83,0%.

Другие примеры представлены в таблице. В примерах 6, 7, 9 используют дисульфид натрия, полученный взаимодействием гидроксида натрия и серы по методике, описанной в примере 3.

Как видно из примеров, предлагаемый способ позволяет увеличить выход целевого продукта на 0,7-13,8% по сравнению с прототипом и упростить технологию получения дициклогексилдисульфида за счет использования более удобных и доступных органических растворителей, что снижает материальные затраты на их регенерацию.

Класс C07C319/14 сульфидов

получение нового класса жидкокристаллических соединений, содержащих четырехатомный фторсодержащий фрагмент мостикого типа -  патент 2511009 (10.04.2014)
способ получения n',n'-бис{[алкил(фенил)сульфанил]метил} арилгидразидов -  патент 2504537 (20.01.2014)
способ получения метионина из гомосерина -  патент 2472778 (20.01.2013)
способ получения n,n-диметил-n-[(алкилсульфанил)метил]аминов -  патент 2466985 (20.11.2012)
способ получения s, s'-бис-[(n,n-диметил)метил]алкандитиолов -  патент 2464259 (20.10.2012)
производные докозагексаеновой кислоты и их применение в качестве лекарственных средств -  патент 2441061 (27.01.2012)
катализатор, способ его приготовления и способ получения диметилсульфида -  патент 2368418 (27.09.2009)
способ синтеза производных с гидрофторметиленсульфонильным радикалом -  патент 2346934 (20.02.2009)
способ получения серусодержащих присадок -  патент 2334787 (27.09.2008)
способ получения алкил- или алкилалкенилсульфидов -  патент 2220134 (27.12.2003)

Класс C07C321/16 насыщенного углеродного скелета, содержащего кольца

Наверх