анаэробная энергоустановка для подводной лодки на основе двигателя стирлинга
Классы МПК: | F02G1/04 с замкнутым циклом B63G8/36 устройства для вентиляции, охлаждения, нагрева, кондиционирования |
Автор(ы): | Кириллов Н.Г. |
Патентообладатель(и): | Военный инженерно-космический университет |
Приоритеты: |
подача заявки:
2001-05-21 публикация патента:
20.08.2002 |
Изобретение относится к области энергетики и двигателей Стирлинга, предназначено в качестве энергоустановки для объектов, функционирующих без связи с атмосферой, например глубоководных аппаратов и подводных лодок. Достигаемый технический результат - уменьшение массогабаритных характеристик установки и снижение стоимости эксплуатации подводной лодки. Энергоустановка содержит двигатель Стирлинга, магистраль забортной воды, которая связана с контуром охлаждения двигателя через аккумулятор холода, емкости с криогенным горючим и криогенным кислородом, экономайзер, холодильный блок, через который проходит контур охлаждения двигателя. Установка снабжена барботажной камерой, частично заполненной забортной водой, к которой подсоединена линия отработанных газов, линией остаточного кислорода, выходящей из газовой части барботажной камеры и подсоединенной к магистрали окислителя с помощью эжектора, расположенного на магистрали окислителя между экономайзером и холодильным блоком. Барботажная камера подсоединена к магистрали забортной воды и связана с забортным пространством напорной линией с насосом, магистраль забортной воды снабжена сбросным отводом с регулирующим вентилем, а в качестве криогенного горючего используется сжиженный природный газ. 1 ил.
Рисунок 1
Формула изобретения
Анаэробная энергоустановка для подводной лодки на основе двигателя Стирлинга, содержащая двигатель Стирлинга, магистраль забортной воды, которая связана с контуром охлаждения двигателя через аккумулятор холода, емкость с криогенным горючим, емкость с криогенным окислителем - кислородом, экономайзер, через который проходят магистрали газообразных компонентов топлива (горючего и окислителя) и линия отработанных газов, холодильный блок, расположенный на магистралях подачи криогенных компонентов топлива и через который проходит контур охлаждения двигателя, отличающаяся тем, что снабжена барботажной камерой частично заполненной забортной водой, к которой подсоединена линия отработанных газов, линией остаточного кислорода, выходящей из газовой части барботажной камеры и подсоединенной к магистрали окислителя с помощью эжектора, расположенного на магистрали окислителя между экономайзером и холодильным блоком, при этом барботажная камера подсоединена к магистрали забортной воды после аккумулятора холода и связана с забортным пространством напорной линией с насосом, магистраль забортной воды снабжена сбросным отводом с регулирующим вентилем, расположенным между аккумулятором холода и барботажной камерой, а в качестве криогенного горючего используется сжиженный природный газ.Описание изобретения к патенту
Изобретение относится к области энергетики и двигателям Стирлинга, предназначено в качестве энергоустановки для морских объектов, функционирующих без связи с атмосферой, например подводных лодок и глубоководных аппаратов. Известно, что природный газ является наиболее перспективным моторным топливом, поскольку он значительно дешевле дизельного топлива и бензина, а также при его сгорании образуется меньшее количество вредных компонентов (окислов) в отработанных газах (Седых А.Д., Роднянский В.М. Политика Газпрома в области использования природного газа а качестве моторного топлива // Газовая промышленность. 10, 1999. - С. 8-9). Известно, что для транспортных средств наиболее целесообразно применять сжиженный природный газ (СПГ), поскольку в данном случае топливные системы имеют меньшие массогабаритные характеристики, чем у транспортных средств со сжатым природным газом (Чириков К.Ю., Пронин Е.Н. Перспективы применения СПГ на транспорте // Газовая промышленность. 10, 1999. - С. 28-29). Известно устройство и принцип работы газового эжектора, предназначенного для смешения и перемещения двух разнородных газовых сред (Чечеткин А.В., Занемонец Н.А. Теплотехника. М.: Высшая школа, 1986. - С. 104-105). Известно устройство двигателя Стирлинга - преобразователя энергии прямого цикла с внешним подводом теплоты, включающего в себя камеру сгорания и холодильник. Однако для повышения кпд двигателя Стирлинга целесообразно использовать охлаждающую среду с температурой ниже температуры окружающей среды для снижения минимальной температуры цикла двигателя (Г. Ридер, Ч. Хупер. Двигатели Стирлинга. М.: Мир, 1986, с. 55). Известна анаэробная установка с двигателем Стирлинга, предназначенная в том числе и для подводной лодки, содержащая двигатель Стирлинга, контур охлаждения двигателя, проходящий через аккумулятор холода, в который подается забортная вода, емкости с криогенными компонентами топлива - жидким водородом и жидким кислородом, экономайзер, через который проходят линии газообразных компонентов топлива и линия отработанных газов, холодильный блок, расположенный на магистралях подачи криогенных компонентов топлива и через который проходит контур охлаждения двигателя (Кириллов Н.Г. Автономная энергоустановка с двигателем Стирлинга. Заявка РФ на изобретение 96116770, F 02 G 1/ 04, Бюл 32 от 20.11.98, с. 192). Однако в данной установке в качестве горючего применяется жидкий водород, который, с одной стороны, является очень дорогим веществом, а с другой стороны, его хранение требует применения азотного экрана, что значительно усложняет конструкцию и повышает стоимость криогенной емкости, по сравнению с хранением жидкого природного газа. Технический результат, который может быть получен при осуществлении изобретения, заключается в уменьшении массогабаритных характеристик установки и снижении стоимости эксплуатации подводной лодки в целом. Для достижения этого технического результата анаэробная энергоустановка для подводной лодки на основе двигателя Стирлинга, содержащая двигатель Стирлинга, магистраль забортной воды, которая связана с контуром охлаждения двигателя через аккумулятор холода, емкость с криогенным горючим, емкость с криогенным окислителем - кислородом, экономайзер, через который проходят магистрали газообразных компонентов топлива (горючего и окислителя) и линия отработанных газов, холодильный блок, расположенный на магистралях подачи криогенных компонентов топлива и через который проходит контур охлаждения двигателя, снабжена барботажной камерой, частично заполненной забортной водой, к которой подсоединена линия отработанных газов, линией остаточного кислорода, выходящей из газовой части барботажной камеры и подсоединенной к магистрали окислителя с помощью эжектора, расположенного на магистрали окислителя между экономайзером и холодильным блоком, при этом барботажная камера подсоединена к магистрали забортной воды после аккумулятора холода и связана с забортным пространством напорной линией с насосом, магистраль забортной воды снабжена сбросным отводом с регулирующим вентилем, расположенным между аккумулятором холода и барботажной камерой, а в качестве криогенного горючего используется сжиженный природный газ. Введение в состав анаэробной энергоустановки на основе двигателя Стирлинга барботажной камеры с подсоединенной к ней линией отработанных газов, а в магистрали окислителя (кислорода) - эжектора, через который линия остаточного кислорода, выходящая из газовой части барботажной камеры, подсоединена к магистрали окислителя, а также использование в качестве криогенного горючего сжиженного природного газа позволяют получить новое свойство, заключающееся в растворении отработанных газов (кроме кислорода) в забортной воде с последующим ее удалением за борт и в возвращении избыточного кислорода в камеру сгорания двигателя Стирлинга, что обеспечивает утилизацию продуктов сгорания углеводородного топлива, а также значительное снижение эксплуатационных затрат на использование и хранение криогенного топлива за счет применения более дешевого горючего СПГ. На чертеже изображена анаэробная энергоустановка для подводной лодки на основе двигателя Стирлинга. Анаэробная энергоустановка на основе двигателя Стирлинга состоит из преобразователя энергии прямого цикла с внешним подводом теплоты (двигатель Стирлинга) 1, контура охлаждения 2 преобразователя 1, аккумулятора холода 3, емкости с жидким кислородом 4, емкости со сжиженным природным газом СПГ 5, магистрали подачи кислорода 6, магистрали подачи СПГ 7, холодильного блока 8, экономайзера 9, барботажной камеры 10, линии отработанных газов 11, магистрали подачи забортной воды 12 с насосом 13, проходящей через аккумулятор холода 3 и подсоединенной в барботажной камере 10. Двигатель Стирлинга 1 включает в себя камеру сгорания 14 и холодильник 15. Через холодильник 15 двигателя 1 проходит контур охлаждения 2, связывающий двигатель 1 с аккумулятором холода 3 и холодильным блоком 8. Для циркуляции теплоносителя в контуре охлаждения 2 предназначен насос 16. Камера сгорания 14 двигателя 1 связана с емкостью жидкого кислорода 4 магистралью подачи 6, проходящей через холодильный блок 8, эжектор 17, экономайзер 9 и содержащей насос 18. Сжиженный природный газ из емкости 5 поступает в камеру сгорания 14 по магистрали 7, проходящей через холодильный блок 8, экономайзер 9 и содержащей насос 19. Линия остаточного кислорода 20 выходит из газовой части камеры 10 и подсоединяется к магистрали окислителя 6 через эжектор 17. Барботажная камера 10 снабжена напорной линией 21 с насосом 22. Магистраль забортной воды 12 снабжена между аккумулятором холода 3 и камерой 10 сбросным отводом 23 с регулирующим вентилем 24. Магистраль 12 имеет перед камерой 10 регулирующий вентиль 25. Анаэробная энергоустановка на основе двигателя Стирлинга работает следующим образом. Предварительно, перед началом функционирования подводной лодки в автономном режиме, в ней запасаются в необходимых количествах рабочие среды: жидкий кислород в емкости 4 в сжиженный природный газ в емкости 5. Для обеспечения полноты сгорания природного газа, которая характеризуется содержанием СО (окиси углерода) и С (углерода) в отработанных газах, в камеру сгорания 14 подается избыточный кислород, по сравнению с его количеством, которое определяется стехиометрическим соотношением. В камере сгорания 14 происходит реакция горения СПГ и кислорода (с избыточным его количеством) с выделением теплоты, которая передается рабочему телу двигателя Стирлинга 1. Для высокоэффективной работы двигателя 1 в его холодильник 15 подается теплоноситель контура охлаждения 2, который, охлаждая двигатель 1, нагревается и подается в аккумулятор холода 3, где теплоноситель отдает значительную часть теплоты, полученной от двигателя 1, забортной воде, охлаждается и насосом 16 подается в холодильный блок 8. Здесь теплоноситель охлаждается до температуры ниже температуры окружающей среды (забортной воды) за счет теплообмена с криогенными компонентами топлива (СПГ и кислородом), после чего вновь поступает в холодильник 15 для охлаждения двигателя 1. Охлаждение теплоносителя до более низких, чем окружающая среда, температур позволяет значительно повысить кпд двигателя Стирлинга 1 за счет снижения его минимальной температуры цикла. В холодильный блок 8 жидкий кислород и сжиженный природный газ подаются из емкостей 4 и 5 соответственно насосами 18 и 19 по магистралям 6 и 7. В холодильном блоке 8 природный газ и кислород нагреваются, переходят в газообразное состояние с повышением давления, охлаждая теплоноситель контура охлаждения 2, так как имеют более низкий уровень температур, после чего поступают в экономайзер 9, где перегреваются до высокой температуры ввиду теплообмена с отработанными газами, выходящими из камеры сгорания 14. Затем природный газ и кислород поступают в камеру сгорания 14, где происходит реакция горения. Продукты сгорания (отработанные газы) удаляются из камеры сгорания 14 по линии 11. После экономайзера 9 отработанные газы поступают в барботажную камеру 10, где, проходя через слой забортной воды, очищаются от двуокиси углерода (СО2), которая растворяется в воде. Остаточный (избыточный) кислород из газовой части камеры 10 по линии 20 засасывается через эжектор 17 в магистраль окислителя 6. Забортная вода в подводную лодку подается по магистрали 12 с помощью насоса 13, проходит в аккумулятор 3, после чего частично поступает в камеру 10, а частично удаляется за борт по сбросному отводу 23. Для регулирования количества забортной воды, поступающей в камеру 10 и за борт, предусмотрены регулирующие вентили 24 и 25. Для удаления из барботажной камеры 10 раствора СО2 и забортной воды предусмотрена напорная линия 21 с насосом 22. Источники информации, принятые во внимание при составлении заявки1. Седых А.Д., Роднянский В.М. Политика Газпрома в области использования природного газа в качестве моторного топлива // Газовая промышленность. 10, 1999. - С. 8-9. 2. Чириков К.Ю., Пронин Е.Н. Перспективы применения СПГ на транспорте // Газовая промышленность. 10, 1999. - С. 28-29. 3. Чечеткин А.В., Занемонец Н.А. Теплотехника. М.: Высшая школа, 1986 - С. 104-105. 4. Г. Ридер., Ч. Хупер. Двигатели Стирдинга. М.: Мир, 1986, с. 55. 5. Кириллов Н.Г. Автономная энергоустановка с двигателем Стирлинга. Заявка РФ на изобретение 96116770, F 02 G 1/04, Бюл. 32 от 20.11.98, с. 192 - прототип.
Класс F02G1/04 с замкнутым циклом
Класс B63G8/36 устройства для вентиляции, охлаждения, нагрева, кондиционирования