баллон давления из композиционного материала
Классы МПК: | F17C1/06 выполненные из намотанных лент или нитевидных материалов, например проволоки F17C1/16 изготовленные из пластмасс |
Автор(ы): | Соколовский М.И., Каримов В.З., Нельзин Ю.Б. |
Патентообладатель(и): | Открытое акционерное общество Научно-производственное объединение "Искра" |
Приоритеты: |
подача заявки:
2001-02-07 публикация патента:
20.08.2002 |
Баллон давления из композиционного материала содержит цельномотанную оболочку. В ее полюсных отверстиях установлены металлические фланцы, каждый из которых имеет хвостовик. Опорная поверхность хвостовика выполнена криволинейно-вогнутой. Ее образующая удовлетворяет условию
где
- угол между осью фланца и касательной к образующей опорной поверхности хвостовика в точке с радиусом r в радианах; r - радиус точки образующей опорной поверхности (r0
r
b); r0 - радиус полюсного отверстия; b - радиус вершины хвостовика фланца;
- угол разворота хвостовика фланца при давлении в радианах;
- относительная кольцевая деформация пластика в полюсном отверстии при давлении;
b - угол между осью фланца и касательной к днищу в вершине хвостовика в радианах. Использование изобретения позволит снизить массу баллона давления. 2 ил.
Рисунок 1, Рисунок 2







Формула изобретения
Баллон давления из композиционного материала, содержащий цельномотанную оболочку, в полюсных отверстиях которой установлены металлические фланцы, имеющие хвостовик, на который уложен пластик оболочки, отличающийся тем, что опорная поверхность хвостовика выполнена криволинейно-вогнутой, образующая которой удовлетворяет условию
где

r - радиус точки образующей опорной поверхности (r0


r0 - радиус полюсного отверстия;
b - радиус вершины хвостовика фланца;



Описание изобретения к патенту
Изобретение относится к машиностроению, а именно к баллонам давления, изготовляемым из композиционного материала, и может быть использовано при создании твердотопливных двигателей ракет, в химическом машиностроении, а также в других отраслях промышленности. Из патентной литературы широко известны конструкции цельномотанных пластиковых баллонов давления из композиционных материалов, содержащих пластиковую оболочку и установленные в полюсных отверстиях металлические фланцы. См., например, а.с. СССР SU 1089344. Известно техническое решение по патенту РФ 2037735, кл. F 17 C 1/00, 92 г. , выбранное за прототип. Фланец содержит опорный хвостовик, который упирается в пластик силовой оболочки, и узел стыковки, к которому присоединяются другие элементы конструкции, например крышка. К недостаткам данных баллонов относится повышенный уровень напряженно-деформированного состояния (НДС) пластиковой оболочки в зонах полюсных отверстий от неравномерного контактного давления со стороны хвостовика фланца, что снижает несущую способность баллона. Разрушение баллонов в значительном количестве случаев происходит по пластиковой оболочке в зонах полюсных отверстий. Поэтому при расчетах оболочки этот эффект учитывается введением в расчетные формулы коэффициента концентрации напряжений, составляющего величину 1,1-1,2. Для компенсации снижения несущей способности оболочки наматываются дополнительные слои пластика, что приводит к увеличению толщины пластика на 15-20% и соответствующему увеличению массы баллона. Основной причиной неравномерности контактного давления между пластиком и хвостовиком фланца является смещение пластика вдоль образующей хвостовика за счет увеличения диаметра полюсного отверстия при нагружении давлением и одновременный поворот хвостовика фланца (вершина хвостовика перемещается от пластика внутрь оболочки), что приводит к несоответствию контактных поверхностей хвостовика фланца и пластика со значительным увеличением контактного давления на краю полюсного отверстия пластика. Технической задачей является снижение массы баллона давления путем исключения неравномерности контактного давления по границе хвостовик фланца-пластик за счет полного совпадения контактных поверхностей хвостовика фланца и пластика в нагруженном состоянии. Технический результат достигается тем, что опорная поверхность хвостовика фланца выполнена криволинейно-вогнутой. При этом соответствие контактных поверхностей достигается автоматически при соответствующем выборе профиля контактной поверхности хвостовика фланца в ненагруженном состоянии. На фиг. 1 представлена известная конструкция баллона давления в зоне расположения фланца. Хвостовик фланца 1 упирается в контактирующий с ним пластик композиционной оболочки 2. Штриховой линией показаны контуры фланца и пластика при нагружении баллона давлением. При этом за счет деформации пластика 2 радиус полюсного отверстия (начальное значение r0) увеличивается на величину u. В то же время хвостовик фланца 1 разворачивается на угол



u =


Угол между касательной к образующей контактной поверхности хвостовика фланца (начальное значение угла





Учитывая, что форма равнопрочного днища оболочки при действии давления подобна начальной (Образцов И.Ф., Васильев В.В., Бунаков В.А. "Оптимальное проектирование оболочек вращения из композиционных материалов", М. , "Машиностроение", 1977), угол между образующей контактной поверхности пластика и осью баллона в нагруженном состоянии



Условие совпадения контактных поверхностей заключается в равенстве углов образующих контактных поверхностей фланца и пластика в рабочем состоянии



Решением данного уравнения с учетом выражения (1) является функция зависимости угла между образующей контактной поверхности пластика и осью баллона в ненагруженном состоянии:

где



Из формулы видно, что угол




Класс F17C1/06 выполненные из намотанных лент или нитевидных материалов, например проволоки
Класс F17C1/16 изготовленные из пластмасс