комплементарный полупроводниковый прибор

Классы МПК:H01L27/092 комплементарные полевые МДП-транзисторы
Автор(ы):, ,
Патентообладатель(и):Московский государственный университет путей сообщения
Приоритеты:
подача заявки:
1997-01-09
публикация патента:

Изобретение относится к полупроводниковой электронике и микроэлектронике, классу многофункциональных приборов. Технический результат заключается в расширении функциональных возможностей прибора. Предложен полупроводниковый прибор, структура которого в зависимости от коммутации выводов прибора может выполнять функции комплементарных n-МОП и р-МОП транзисторов, или комплементарных биполярных транзисторов n-p-n и р-n-р типов, или двух новых комплементарных элементов, каждый из которых имеет по два управляющих электрода, а также может работать в качестве двухэмиттерного транзистора, тиристора и элемента инжекционной логики И2Л. 10 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10

Формула изобретения

Комплементарный полупроводниковый прибор, содержащий подложку первого типа проводимости, выполненные в ней две области второго типа проводимости и карман второго типа проводимости, в котором сформированы две области первого типа проводимости, слой диэлектрика на поверхности подложки, два затвора и выводы от всех областей, отличающийся тем, что расстояние между двумя областями первого типа проводимости, расположенными в кармане второго типа проводимости и расстояние между двумя областями второго типа проводимости, выполненными в подложке, меньше длин диффузионного пробега неосновных носителей в кармане и подложке соответственно, а концентрация легирующих примесей в кармане меньше, чем в расположенных в нем двух областях второго типа проводимости.

Описание изобретения к патенту

Изобретение относится к полупроводниковой электронике и микроэлектронике, классу многофункциональных приборов, может быть использовано в двухтактных цифровых и аналогичных устройствах, в частности отказоустойчивых.

Многофункциональные приборы могут реализовать на базе одной полупроводниковой структуры функции нескольких активных элементов, в том числе биполярных и МОП транзисторов, что сокращает номенклатуру приборов, унифицирует их технологию, повышает отказоустойчивость электронных устройств.

Известны электронные устройства, использующие взаимодополняющие (комплементарные) активные приборы. Требования к этим приборам - различные виды основных носителей и идентичность приборов.

Биполярные устройства используют пары дискретных транзисторов n-p-n и р-n-р типов с идентичными параметрами. Реализация комплементарных элементов в биполярных интегральных микросхемах технологически затруднена, параметры n-р-n и р-n-р элементов микросхем существенно различаются между собой. Комплементарные МОП устройства реализуют на КМОП структурах микросхем или реже на дискретных n-МОП и р-МОП транзисторах с каналами соответственно n- и р-проводимостей. Информация о реализации в одной полупроводниковой структуре функций комплементарных как биполярных, так и МОП транзисторов в известных авторам источниках не обнаружена.

В качестве прототипа принята наиболее близкая по технической сущности известная КМОП полупроводниковая структура микросхемы, в р-подложке которой сформирована n-область ("карман", в этом кармане - две расположенные рядом р-области [1] ). Кроме того, в р-подложке сформированы две рядом расположенные n-области. Поверхность структуры содержит слой диэлектрика и два металлических затвора. Структура имеет выводы от двух затворов, двух р-областей и двух n-областей, а также вспомогательные выводы р-подложки и n-кармана [1] .

Признаки прототипа - подложка, карман, р- и n-области, слой диэлектрика, два затвора, выводы от восьми областей - совпадают с признаками заявляемого объекта.

Однако на базе структуры прототипа реализуют только два комплементарных р-МОП и n-МОП транзистора, являющихся активными элементами КМОП микросхемы. Возможности работы структуры прототипа в качестве биполярных элементов -вертикального р-n-р транзистора - весьма ограничены. Они рассматриваются в [1] как недопустимые и применяют ряд конструктивных мер для снижения возможности перехода работы структуры в указанные выше режимы.

Техническим результатом изобретения является создание универсальной полупроводниковой структуры, которая могла бы выполнять функции как биполярных, так и МОП комплементарных транзисторов, а также других активных элементов и приборов, т.е. повышение функциональных возможностей полупроводниковых приборов. Данный технический результат достигается прибором, структура которого состоит из полупроводниковой подложки первого типа проводимости, в которой сформирована область другого типа проводимости - карман, и в нем расположены две области первого типа проводимости. В отличие от прототипа, расстояние между этими двумя областями меньше длины диффузионного пробега неосновных носителей кармана, а концентрация легирующей примеси в кармане меньше, чем в расположенных в нем областях. В подложке сформированы также две области другого типа проводимости. В отличие от прототипа, расстояние между этими областями меньше длины диффузионного пробега неосновных носителей подложки. Концентрация легирующей примеси в подложке меньше, чем в расположенных в ней двух областях. Все области структуры и подложки имеют омические (невыпрямляющие) контакты.

Сущность изобретения иллюстрируется чертежом. Примеры осуществления предлагаемого полупроводникового прибора приведены на фиг.1. Данная структура содержит области n-подложки 1", р-карман 2", n+ области 3" и 5", расположенные в кармане 2 на малом расстоянии одна от другой, р-области 6" и 8", расположенные в подложке 1" на малом расстоянии одна от другой, металлические затворы 4" и 7" и слой диэлектрика 9". Электроды 1...8 - выводы областей 1". . . 8" соответственно. На основе предлагаемой полупроводниковой структуры могут быть реализованы следующие активные элементы:

n-МОП и р-МОП комплементарные транзисторы (фиг.2 и фиг.3); n-p-n и р-n-р комплементарные биполярные транзисторы (фиг.4 и фиг.5);

новые комплементарные элементы, каждый из которых имеет два управляющих электрода (фиг.6 и фиг.7).

Кроме того, возможно известное включение структуры прибора в качестве:

двухэмиттерного биполярного транзистора (фиг.8),

тиристора (фиг.9),

элемента интегральной инжекционной логики И2 Л (фиг.10).

Схемотехнические изображения указанных выше приборов и соответствующие им электроды (фиг.1) приведены на фиг.2....10 соответственно. Прибор работает в различных режимах следующим образом. При подаче управляющих электрических сигналов на электроды затворов 4 и 7, контакты 3, 6 и 5, 8 используются как выводы стоков и (или) истоков n-МОП и р-МОП транзисторов соответственно, прибор выполняет функции КМОП. При работе прибора в биполярном транзисторном режиме контакты 1 и 2 соответствуют выводам баз двух горизонтальных комплементарных симметричных транзисторов р-n-р и n-p-n типов соответственно с эмиттерными выводами 6 и 3, коллекторными 5 и 8. При подаче двух управляющих сигналов на затвор 4 и базу 2 или на затвор 7 и базу 1, прибор реализует функцию двух комплементарных полупроводниковых тетродов, каждый из которых имеет по два управляющих электрода. Первый из тетродов n-p-n типа имеет эмиттерный электрод 3, коллекторный 5, управляющие электроды 2 и 4, второму тетроду р-n-р типа соответствуют выводы эмиттера 6 и коллектора 8, управляющие электроды 7 и 1.

Прибор может работать в функции двухэмиттерного вертикального n-р-n транзистора (фиг.8) и тиристора (фиг.9). Кроме того, если подать на электрод 6 положительное питание инжектора и использовать контакт 2 для входных сигналов, прибор может реализовать функцию элемента интегральной инжекционной логики И2Л (фиг.10). Благодаря вышесказанному, предлагаемый прибор может служить в отличие от прототипа не только для реализации КМОП блока на двух комплементарных n-МОП и р-МОП транзисторах, но и для реализации блока на двух комплементарных биполярных n-р-n и р-n-р горизонтальных транзисторах с идентичными параметрами и, что особенно важно, может использоваться в качестве двух новых комплементарных активных элементов, каждый из которых имеет по два управляющих электрода. За счет уменьшения расстояний между областями стоков и истоков (эмиттеров и коллекторов) и снижения концентраций легирующих примесей в подложке и кармане получены новые свойства полупроводниковой структуры по сравнению с прототипом.

Ниже приводятся основные технологические параметры прибора с учетом современного состояния отечественных разработок [2]:

минимальная ширина затвора составляет 4....6 мкм и определяется возможностями современной фотолитографии;

толщина слоя диэлектрика под затвором равна 0,4 мкм;

легирующие примеси: донорные - фосфор, акцепторные - бор.

В приборе используется подложка n-типа, с концентрацией донорной примеси 1012. ..1013 см-3. В ней формируют карман р-типа с концентрацией акцепторных примесей 1016 см. Концентрация донорных примесей в n-областях кармана 1018.. .1020 см-3 . Концентрация акцепторной примеси в двух р-областях, сформированных в подложке, 1018 см-3. Минимальное расстояние между диффузионными областями исток-сток в КМОП приборах составляет 2...4 мкм. Длина диффузионного пробега носителей заряда для кремния при Т=300 К и табличных коэффициентах диффузии, равных 36 см2/сек для электронов и 13 см2/сек для дырок [3, с.13], и времени жизни носителей - 10-6....10-4 сек [4] составляет:

для электронов комплементарный полупроводниковый прибор, патент № 2192691

для дырок комплементарный полупроводниковый прибор, патент № 2192691

что и подтверждает возможность передачи тока между двумя областями р-типа и между двумя областями n-типа рассматриваемого прибора при частотах 104...106 Гц.

Возможность трансформации функций структуры при отказе (обрыве вывода затвора или базы) обеспечивает высокую отказоустойчивость устройства. Разработка отказоустойчивых комплементарных устройств очень актуальна в настоящее время для применения в электронной аппаратуре железнодорожного транспорта. Прибор может быть отнесен к новому классу многофункциональных активных элементов интегральных микросхем и полупроводниковых приборов.

Использование изобретения позволит значительно расширить функциональные возможности комплементарного полупроводникового прибора, структура которого в зависимости от коммутации выводов может выполнять функции различных пар комплементарных элементов - биполярных транзисторных, КМОП и тетроидных с двумя управляющими электродами.

Источники информации

1. Д. Ферри и др. Электроника ультрабольших интегральных схем. М.: Мир, 1991, с. 282, рис.6.3.

2. И.Е. Ефинов и др. Микроэлектроника. М.: Высшая школа, 1987, с.136.

3. Ф. Я. Либерман. Электроника на железнодорожном транспорте. М.: Транспорт, 1987, с.13, табл.2.1.

4. Т. Г. Агаханян. Измерение импульсных параметров полупроводниковых триодов в ключевом режиме. Сб.статей "Полупроводниковые приборы и их применение"/ Под. ред. Я.А. Федотова. Вып. 10. М.: Сов. радио, 1963.

Класс H01L27/092 комплементарные полевые МДП-транзисторы

кмоп-транзистор с вертикальными каналами и общим затвором -  патент 2504865 (20.01.2014)
полупроводниковый прибор с характеристикой лямбда-диода -  патент 2466477 (10.11.2012)
кмоп устройства на основе сурьмы -  патент 2419916 (27.05.2011)
способ формирования полевого кмоп транзистора, созданного с использованием диэлектриков на основе оксидов металлов с высоким коэффициентом диэлектрической проницаемости и металлических затворов, и структура полевого кмоп транзистора -  патент 2393587 (27.06.2010)
способ изготовления полупроводникового элемента с частично проходящей в подложке разводкой, а также изготовленный этим способом полупроводниковый элемент -  патент 2214649 (20.10.2003)
кмоп-структура -  патент 2170475 (10.07.2001)
интегральная схема с двумя типами моп-транзисторов -  патент 2100874 (27.12.1997)
комплементарный ключ -  патент 2054752 (20.02.1996)
Наверх