дистанционно-управляемый регулятор

Классы МПК:F16K17/34 в которых энергия потока протекающей среды приводит в действие запорный механизм 
G05D16/06 в которых чувствительный элемент является гибким, пружинящим элементом, воспринимающим давление, например с диафрагмами, сильфонами, мембранами 
Автор(ы):, ,
Патентообладатель(и):Тюменский государственный нефтегазовый университет
Приоритеты:
подача заявки:
2001-05-07
публикация патента:

Изобретение относится к средствам автоматизации и регулировки технологическими параметрами жидкости или газа и может быть использовано в системах газоснабжения и других технологических трубопроводах, в том числе и магистральных. Дистанционно-управляемый регулятор содержит исполнительный орган и клапан. Исполнительный орган выполнен в виде трубчатой пружины замкнутого контура, совмещающей функции исполнительного и чувствительного органов. Трубчатая пружина установлена в трубопроводе и находится под совместным действием давлений в трубопроводе и управления. Изобретение позволяет повысить надежность работы регулятора, расширить диапазон регулирования и обеспечить дистанционное регулирование параметрами среды. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

Дистанционно-управляемый регулятор, содержащий исполнительный орган и клапан, отличающийся тем, что исполнительный орган выполнен в виде трубчатой пружины замкнутого контура, совмещающей функции исполнительного и чувствительного органов, находящейся под совместным действием давлений в трубопроводе и управления, которая установлена в трубопроводе.

Описание изобретения к патенту

Изобретение относится к средствам автоматизации и регулировки технологическими параметрами жидкости или газа и может быть использовано в системах газоснабжения и других технологических трубопроводах, в том числе и магистральных.

Известны регуляторы прямого действия, в которых в качестве регулирующего (управляющего) органа используются упругие чувствительные элементы - С-образные пружины, мембраны, сильфоны [1]. Однако эти регуляторы требуют установки в системе управления дросселей, заслонок, винтовых пружин и устройств для разгрузки упругого чувствительного элемента, к тому же, данные регуляторы не обладают необходимой надежностью.

Наиболее близким к заявляемому решению, выбранным за прототип, является регулятор давления газа [2]. Он содержит трубопровод, связанный с исполнительным механизмом, и датчик давления, который выполнен в виде сопла и вихревой трубы. Один конец трубы через диафрагму соединен с входом исполнительного механизма и через дроссель с атмосферой, а другой установлен соосно соплу, которое через дроссель соединено с выходом регулятора. Однако данный регулятор не обеспечивает дистанционного управления регулированием, имеет недостаточный диапазон регулирования и сложную конструкцию.

Техническим результатом, на решение которого направлен заявляемый регулятор, является повышение надежности, расширение диапазона и обеспечение дистанционного регулирования параметрами среды (давлением и расходом).

Указанный технический результат достигается тем, что в дистанционно-управляемом регуляторе исполнительный орган и клапан выполнен в виде трубчатой пружины замкнутого контура, установленной в проточной камере технологического трубопровода, позволяющей регулировать технологические параметры за счет разницы давлений в системе управления пружиной и в трубопроводе, обеспечивая автоматическое поддержание заданных параметров при меняющемся давлении в трубопроводе.

Диапазон регулирования расширяется за счет того, что пружина замкнутого контура управляет параметрами среды при изменяющихся давлении в трубопроводе Pт и давлении управления Ру, как при совместном действии, так и при постоянной величине любой из них, т.к. пружина чувствительна как к взаимодействию давления внешней среды, так и внутреннему давлению, перемещая толкатель с клапаном в ту или другую сторону.

Именно выполнение исполнительного органа дистанционно управляемого регулятора в виде трубчатой пружины замкнутого контура и позволяет достичь заявляемого технического результата за счет того, что данная пружина обладает большей жесткостью по отношению к внешним силам по сравнению с С-образными пружинами и надежно работает в условиях вибрационных и ударных нагрузок.

Из источников известна трубчатая пружина замкнутого контура [3], которая используется как манометрическая пружина для измерения внутреннего давления, однако нам не известно применение такого вида пружины в конструкциях дистанционных регуляторов.

Пружина замкнутого контура изготавливается из 4-х участков манометрических пружин плоскоовального контура, запаянных в бабышки. Материал участков пружины регулятора аналогичен материалам, используемым в производстве менометрических пружин (нержавеющие стали 18НХТЮ, сплавы бронзы и т.д.).

На фиг.1 представлен общий вид регулятора.

На фиг.2 представлена установка регулятора в трубопроводе.

На фиг. 3 изображена схема работы регулятора при изменении давления управления Ру.

На фиг. 4 изображена схема работы регулятора при изменении давления в трубопроводе Рт.

Регулятор состоит из корпуса 1, пружины замкнутого контура 2, толкателя 3, клапана 4, гайки с контргайкой 5, держателя 6. Внутри корпуса 1 помещается трубчатая пружина замкнутого контура 2, при помощи толкателя 3 пружина воздействует на клапан 4, который при помощи гайки и контргайки 5 закреплен на толкателе 3. При помощи держателя 6 к пружине подводится давление Ру из системы управления.

Регулятор работает следующим образом.

При подаче в трубчатую пружину 2 давления управления Ру ее криволинейные участки под действием внутреннего давления будут распрямляться, увеличивая проходное сечение регулятора, перемещая толкатель 3 с клапаном 4 вверх (фиг. 3).

Регулятор автоматически обеспечивает постоянный расход жидкости в зависимости от величины давления в трубопроводе. При уменьшении давления пружина 2 будет распрямляться, перемещая толкатель 3 с клапаном 4 вверх, увеличивая проходное сечение регулятора, при увеличении давления в трубопроводе Pт кривизна пружины 2 увеличивается и толкатель 3 с клапаном 4 опускаются вниз, уменьшая проходное сечение и обеспечивая постоянство расхода (фиг.4).

В зависимости от разности давлений Рт и Ру можно в широком диапазоне дистанционно обеспечить заданный расход и давление жидкости или газа.

Предлагаемый регулятор прямого действия позволяет дистанционно изменять диапазон регулирования, имеет простую конструкцию, не требуя установки в системе управления дросселя, заслонок, винтовых пружин, устройств для разгрузки упругого чувствительного элемента, используемых в известных регуляторах.

Использование предлагаемого регулятора увеличивает точность и надежность регулирования, обеспечивает высокую эффективность управления расходом регулируемой среды за счет дистанционного управления регулятором, работающим на разности давлений. Его можно использовать для регулирования расхода и давления среды в различных технологических процессах, особенно во взрывоопасных средах, где применение электрических схем управления требует обеспечения известных мер безопасности, что удорожает конструкцию. Регулятор обеспечивает также надежную работу в условиях вибрационных и ударных нагрузок в силу замкнутого контура пружины.

Источники информации

1. Автоматические приборы, регуляторы и управляющие машины./ В.Д. Кошарский и др.- "Машиностроение", 1968 г. - с.131-141, с.355-360.

2. А.с. 392468 СССР, М. Кл. G 05 d 16/04, опубл. 1973 (прототип).

3. А.с. 274427 СССР, М. Кл. G 01 d 07/04, опубл. 1970.

Класс F16K17/34 в которых энергия потока протекающей среды приводит в действие запорный механизм 

блок клапанов с механизмом двойного контроля -  патент 2485382 (20.06.2013)
запорно-регулирующее устройство для автоматической отсечки шлейфа газовой скважины -  патент 2386882 (20.04.2010)
способ аварийного перекрытия потока рабочей среды и клапан-отсекатель для его осуществления (варианты) -  патент 2293240 (10.02.2007)
автомат аварийного закрытия крана на магистральных газопроводах -  патент 2238468 (20.10.2004)
устройство для подачи воды из скважины в башню и его автоматический сливной клапан -  патент 2222671 (27.01.2004)
автомат аварийного закрытия крана на магистральных газопроводах -  патент 2208730 (20.07.2003)
устройство для отсечки шлейфа газовой скважины -  патент 2180717 (20.03.2002)
клапан-отсекатель -  патент 2145024 (27.01.2000)
автомат аварийного отключения газопровода -  патент 2138720 (27.09.1999)
устройство вскрытия баллона -  патент 2097640 (27.11.1997)

Класс G05D16/06 в которых чувствительный элемент является гибким, пружинящим элементом, воспринимающим давление, например с диафрагмами, сильфонами, мембранами 

седло клапана с принудительной фиксацией положения для использования с устройствами управления расходом текучей среды -  патент 2529777 (27.09.2014)
уравновешенный вставной клапан -  патент 2528220 (10.09.2014)
терморегулятор давления -  патент 2523334 (20.07.2014)
внутреннее предохранительное клапанное устройство для использования с нагрузочными регуляторами -  патент 2521739 (10.07.2014)
терморегулятор давления -  патент 2517972 (10.06.2014)
корпус уравновешенного канала с встроенным кондиционированием потока -  патент 2509943 (20.03.2014)
система мониторинга давления, включающая в себя несколько реле давления -  патент 2502969 (27.12.2013)
регулятор давления прямого действия с нагрузкой давлением с затвором сбалансированного давления -  патент 2498387 (10.11.2013)
регулятор давления -  патент 2490689 (20.08.2013)
клапанный порт для газового регулятора с улучшенной пропускной способностью -  патент 2488873 (27.07.2013)
Наверх