способ нейтронно-трансмутационного легирования кремния
Классы МПК: | C30B31/20 легирование путем облучения электромагнитными волнами или облучения частицами C30B29/06 кремний H01L21/263 с высокой энергией |
Автор(ы): | Шевченко В.Г., Шмаков Л.В., Лебедев В.И., Чумаченко Г.А., Трунов В.А., Булкин А.П. |
Патентообладатель(и): | Государственное предприятие Ленинградская атомная электростанция им. В.И. Ленина, Закрытое акционерное общество Научно-производственное объединение "Энергоатоминвент" |
Приоритеты: |
подача заявки:
2000-09-27 публикация патента:
27.11.2002 |
Изобретение относится к технологии нейтронно-трансмутационного легирования (НТЛ) кремния при промышленном производстве на энергетических реакторах типа РБМК, широко применяемого в технологии изготовления приборов электронной и электротехнической промышленности. Сущность изобретения: в способе нейтронно-трансмутационного легирования кремния, включающем циклическое облучение нейтронным потоком по дозно-временному регламенту контейнера со слитком кремния в канале ядерного реактора с известным исходным, но изменяющимся во времени высотным распределением плотности нейтронного потока, контроль за усредненным по длине слитка в контейнере флюенсом нейтронов, предложено вместе с легируемым кремнием в контейнере разместить несколько контрольных кремниевых шайб, облучение периодически прерывать, контейнер извлекать, производить отжиг контрольных шайб и измерения электрофизических параметров одной из них. Операции облучения и измерения повторяют до получения требуемых электрофизических параметров у кремния, а время каждого последующего облучения определяют по формуле tфакт=(t1+ti), где ti=0,7t - первый цикл облучения; ti=(фо-фi)/т(o)- последующие циклы облучения; где tфакт - фактическое время облучения слитков кремния при циклическом облучении, с; t1 - время облучения слитков кремния за 1-й цикл облучения, с; ti - время облучения слитков кремния за i-й цикл облучения, с; t0 - теоретически расчетное время облучения слитков кремния для набора расчетного флюенса, с; фо - расчетный флюенс облучения для достижения заданных электрофизических параметров кремния, см-2; фi - флюенс, набираемый слитками кремния при i-м цикле облучения, см-2; т(o)- плотность потока тепловых нейтронов, измеренная перед началом нейтронного облучения кремния, на основании которого рассчитывается to(n/см2 с-1). Использование предлагаемого способа получения легированных фосфором монокристаллов кремния повышает качество радиационно-легированного до низких номиналов УЭС кремния: снижает разброс УЭС; позволяет сохранить монокристаллическую структуру слитка, что в конечном итоге приводит к снижению внутренних механических напряжений и повышению времени жизни неосновных носителей заряда. 1 з.п.ф-лы, 2 ил., 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
1. Способ нейтронно-трансмутационного легирования кремния, включающий циклическое облучение нейтронным потоком по дозно-временному регламенту контейнера со слитками кремния в канале ядерного реактора с известным исходным, но изменяющимся во времени высотным распределением плотности нейтронного потока, контроль за усредненным по длине слитка в контейнере флюенсом нейтронов, отличающийся тем, что вместе с легируемым кремнием в контейнере размещают несколько контрольных кремниевых шайб, облучение периодически прерывают, контейнер извлекают, производят отжиг контрольных шайб и измерения электрофизических параметров одной из них, причем, операции облучения и измерения повторяют до получения требуемых электрофизических параметров у кремния, а время каждого последующего облучения определяют по формуле:tфакт= (t1+ti),
где ti= 0,7t - первый цикл облучения;
ti= (фо-фi)/т(o)- последующие циклы облучения;
tфакт - фактическое время облучения слитков кремния при циклическом облучении, с;
t1 - время облучения слитков кремния за 1-й цикл облучения, с;
ti - время облучения слитков кремния за i-й цикл облучения, с;
t0 - теоретически расчетное время облучения слитков кремния для набора расчетного флюенса, с;
фо - расчетный флюенс облучения для достижения заданных электрофизических параметров кремния, см-2;
фi - флюенс, набираемый слитками кремния при i-м цикле облучения, см-2;
т(o) - плотность потока тепловых нейтронов, измеренная перед началом нейтронного облучения кремния, на основании которого рассчитывается to(n/см2 с-1). 2. Способ по п. 1, отличающийся тем, что первоначальное облучение проводят в течение времени, составляющем 60-70% от расчетного, а время повторного облучения составляет 20-30% от расчетного.
Описание изобретения к патенту
Изобретение относится к технологии нейтронно-трансмутационного легирования (НТЛ) кремния при промышленном производстве на энергетических реакторах типа РБМК, широко применяемого в технологии изготовления приборов электронной и электротехнической промышленности. Образование (НТЛ) осуществляется по ядерной реакции [1,4]:при облучении слитков кремния в ядерном реакторе потоком тепловых нейтронов, в результате которой в конечном итоге образуются ядра легирующей примеси фосфора. Распределение этих ядер следует за распределением флюенса тепловых нейтронов по объему слитков кремния. В технологии НТЛ к кремнию предъявляют жесткие требования по точности набора флюенса - 8-10% или менее (количество образующихся ядер фосфора, а в конечном итоге заданное удельное сопротивление НТЛ кремния). Известен способ получения НТЛ кремния [2], включающий перемещение контейнера со слитками кремния по каналу реактора из одного крайнего положения в другое, в котором середина слитков совмещена с серединой выбранного участка для облучения. Недостатком этого способа является, то, что для достижения требуемой точности набора флюенса следует перед каждым облучением формировать нейтронное поле с помощью поглотителей и замедлителей тепловых нейтронов. Однако, если происходит изменение нейтронного поля в процессе облучения, то точность набора флюенса падает, что приводит к переоблучению или недооблучению кремния. Известен способ нейтронно-трансмутационного легирования кремния [3], включающий возвратно-поступательное перемещение не менее двух контейнеров со слитком кремния по каналу реактора через зону облучения по рассчитанному заранее дозно-временному регламенту. При смене направления движения контейнеров в зоне облучения должен присутствовать хотя бы один из контейнеров. После одного или нескольких циклов перемещения процесс облучения прерывают и производят смену контейнеров местами или замену по крайней мере одного из них. Скорость перемещения контейнеров является величиной переменной и зависит от требуемой величины флюенса. Данный способ является трудоемким, недостаточно производительным и не обеспечивает требуемой точности набора флюенса. Известен также способ НТЛ кремния [4], включающий перемещение через канал ядерного реактора с постоянной скоростью непрерывно следующих друг за другом контейнеров большой протяженности со слитками кремния. В этом способе контейнеры загружают в канал реактора с одной стороны, а выгружают с другой. Главное и серьезное достоинство этого способа - это почти полное использование объема зоны облучения в канале для легирования кремния. Если пренебречь зазором между кремнием в соседних контейнерах, то получается, что весь объем канала и его зоны облучения заняты кремнием. Однако такой способ можно реализовать лишь на канале реактора, к которому возможен доступ с обоих торцов. Наиболее близким аналогом заявляемого изобретения является способ нейтронно-трансмутационного легирования кремния [5], включающий возвратно-поступательное перемещение контейнера через зону облучения по каналу реактора и контроль за усредненным по длине слитков флюенсом нейтронов. Предварительно в канале реактора формируют нейтронное поле и вдоль канала выбирают участок, на котором распределение плотности потока тепловых нейтронов является четной функцией. В контейнере размещают слитки кремния общей длиной не более длины выбранного участка в канале. В процессе облучения контейнер со слитками перемещают по каналу из крайнего в положение, при котором середина длины слитков совмещена с серединой выбранного участка. После облучения половинным от требуемого флюенса нейтронов процесс облучения прерывают, контейнер разворачивают, меняя местами его торцы, и точно также дооблучают контейнер оставшимся флюенсом нейтронов. Недостатком этого способа является его трудоемкость, связанная с тем, что для достижения требуемой точности набора флюенса следует перед каждым облучением формировать нейтронное поле с помощью поглотителей и замедлителей тепловых нейтронов, а если происходит изменение нейтронного поля в процессе облучения, то точность набора флюенса падает, что приводит к переоблучению или недооблучению кремния. Задачей, решаемой заявленным изобретением, является повышение точности набора флюенса, а в конечном итоге, получение заданного удельного сопротивления НТЛ кремния с точностью до 3% и снижение трудозатрат. Сущность изобретения состоит в том, что в способе нейтронно-трансмутационного легирования кремния, включающем циклическое облучение нейтронным потоком по дозно-временному регламенту контейнера со слитками кремния в канале ядерного реактора с известным исходным, но изменяющимся во времени высотным распределением плотности нейтронного потока, контроль за усредненным по длине слитка в контейнере флюенсом нейтронов, предложено вместе с легируемым кремнием в контейнере разместить несколько контрольных кремниевых шайб, облучение периодически прерывать, контейнер извлекать, производить отжиг контрольных шайб и измерения электрофизических параметров одной из них. Операции облучения и измерения повторяют до получения требуемых электрофизических параметров у кремния, а время каждого последующего облучения определяют по формуле:
tфакт=(t1+ti),
где ti=0,7t - первый цикл облучения;
ti=(фо-фi)/т(o)- последующие циклы облучения;
tфакт - фактическое время облучения слитков кремния при циклическом облучении, с;
t1 - время облучения слитков кремния за 1-й цикл облучения, с;
ti - время облучения слитков кремния за i-й цикл облучения, с;
t0 - теоретически расчетное время облучения слитков кремния для набора расчетного флюенса, с;
фо - расчетный флюенс облучения для достижения заданных электрофизических параметров кремния, см-2;
фi - флюенс, набираемый слитками кремния при i-ом цикле облучения, см-2;
т(o)- плотность потока тепловых нейтронов, измеренная перед началом нейтронного облучения кремния, на основании которого рассчитывается to(n/см2 с-1). Кроме того, предлагается первоначальное облучение проводить в течение времени, составляющем 6070% от расчетного, а время повторного облучения выбрать из интервала 2030% от расчетного. В заявляемом способе реализуется метод последовательного статистического контроля и анализа процесса облучения кремния в реакторе с помощью контрольных кремниевых шайб, при этом время облучения кремния на каждом последующем этапе экспонирования определяют по предложенной зависимости, которая учитывает значение достигнутых электрофизических характеристик кремния и значения текущего высотного распределения плотности потока нейтронов в зоне облучения непосредственно перед началом очередного цикла облучения. Таким образом удается вести строго контролируемое по величине и во времени облучение кремния. Способ позволяет автоматически учесть влияние стенок контейнера и неоднородность исходных электрофизических характеристик данной конкретной партии кремния на достижение его конечных электрофизических характеристик. Вероятность передозировки кремния практически исключена, т.к. время облучения каждого последующего цикла непрерывно снижается и строго регламентируется. С учетом практики выполнения облучения рекомендуется облучение проводить на первом этапе в течение времени, составляющем 6070% от расчетного, а повторное - в течение 2030% времени от расчетного. Это исключает возможность передозировки. Кремний, как полупроводниковый материал, характеризуется рядом электрофизических параметров, таких как:
- удельное электрическое сопротивление (УЭС) ,
- время жизни неосновных носителей заряда ,
- подвижность носителей заряда ,
- концентрация носителей заряда .
В результате облучения кремния тепловыми нейтронами по ядерной реакции концентрация вносимого при нейтронном легировании фосфора определяется по формуле:
Np = NsiK3030тt,
где Nsi - концентрация атомов кремния в исходной смеси изотопов, ат/см2 (51022);
K30 - относительное содержание изотопа Si30 (0,031);
30- - сечение активации, см2 (0,1110-24);
т- - плотность потока тепловых нейтронов n/(см2с);
t - время облучения, (с). После подстановки констант выражение будет иметь вид:
В результате облучения кремния образуется некоторая концентрация фосфора, являющаяся легирующей примесью, которая и приводит к изменению удельного электрического сопротивления (УЭС) кремния. Таким образом, управляя плотностью потока тепловых нейтронов (т) и временем облучения (t), можно управлять количеством образующейся концентрации фосфора (Np) и как следствие значением (УЭС). При нейтронном легировании кремния на реакторах РБМК-1000 для получения необходимой концентрации фосфора в кремнии управляют временем облучения (t), а поток тепловых нейтронов (т) является нерегулируемой физической характеристикой реактора. Технологическая последовательность нейтронного облучения кремния по выбранному способу проиллюстрирована фиг.1, где поз.1 - облучательный канал реактора типа РБМК-1000, поз.2 - контейнер для облучения кремния, поз.3 - слитки кремния, поз. 4 - контрольные кремниевые шайбы, поз.5 - зона нейтронно-трансмутационного легирования кремния с высотным распределением потока тепловых нейтронов не хуже 1,5%, и заключается в следующем: непосредственно перед загрузкой кремния в реактор на облучение производят сканирование облучательного канала (ОК) по всей высоте активной зоны реактора камерой деления типа КТ-19. По полученным значениям тока камеры КТ-19 рассчитывают фактическое значение плотности потока тепловых нейтронов по высоте активной зоны реактора и находят участок облучения (см. фиг.2), где значения (т) не превышало бы 1,5%. Длина такого участка [1] (фиг.1) обычно находится в пределах 10001500 мм. В соответствии с длиной полученного участка облучения в канале 1 реактора заполняют контейнер 2 слитками кремния 3 и дополнительно укладывают туда 3 шт. контрольных кремниевых шайб 4, которые облучают по расчетному времени (t1). По истечении расчетного времени контейнер 2 с кремнием 3 выгружают из канала 1 реактора, извлекают одну контрольную шайбу 4. Производят контроль шайбы 4 и по полученному УЭС рассчитывают следующий режим облучения (время облучения - t2). Затем вновь загружают контейнер 2 с кремнием 3 и контрольными шайбами 4 в ОК и облучают по расчетному времени (t2). Выгружают контейнер 2 с кремнием 3 из канала 1 реактора, извлекают вторую контрольную шайбу 4. Производят после отжига контроль шайбы 4 и по полученному УЭС рассчитывают следующий режим облучения (время облучения - t3). Таким образом, за счет многократного контроля набираемого флюенса в период облучения слитков 3 кремния, без нарушения режима работы реактора, дозно-временные циклы продолжают до тех пор, пока в кремнии не будет достигнут заданный флюенс с точностью до 2%. Способ поясняется примерами 1, 2, 3. Примеры нейтронно-трансмутационного легирования кремния по данной технологии сведены в табл. 1, 2, 3. Облучение кремния проводилось на реакторе РБМК-1000 в облучательном канале (ОК), установленном вместо канала системы управления и защиты (СУЗ). 1. При помощи камеры КТ-19 измерено высотное распределение плотности потока тепловых нейтронов (т(o)) и определено "плато" с радиальным распределением (т(o)) не хуже 1,5% (столбец 5). 2. По исходным значениям исх (столбец 2) и заданным значениям кон (столбец 3) кремния произведены расчеты набираемого флюенса ф0 (столбец 4) и время облучения t0 (столбец 6). 3. В контейнер с кремнием, подготовленный для облучения, загрузили 3 контрольные кремниевые шайбы с измеренными исходными значениями исх и загрузили контейнер в ОК на "плато". 1-й цикл облучения:
облучение проводится в течение 70% t0. По окончании t1 (столбец 7) контейнер с кремнием выгрузили из ОК и поместили его в бассейн выдержки для спада радиоактивности на 2-е суток. После спада активности извлекли из контейнера 1 контрольную шайбу, произвели отжиг, измерили ее 1, по исходному значению исх и полученному после облучения 1 рассчитали набранную дозу ф1 (столбец 8) облучения за t1. 2-й цикл облучения:
по выражению ф2=(ф0-ф1)/0,5 рассчитываем флюенс для облучения на 2-й цикл. По выражению
рассчитываем время облучения 2-го цикла. По окончании t2 (столбец 9) выгрузили контейнер с кремнием из ОК и поместили его в бассейн выдержки для спада радиоактивности на 2-е суток. После спада активности извлекли из контейнера 2-ю контрольную шайбу, произвели отжиг, измерили ее 2 по исходному значению исх и полученному после облучения 2 рассчитали набранный флюенс ф1+ф2 (столбец 10) облучения за t1+t2. 3-й цикл облучения:
по выражению ф3=(ф0-ф1-ф2) рассчитываем флюенс для облучения 3-го цикла. По выражению рассчитываем время облучения 3-го цикла. По окончании t3 (столбец 11) выгрузили контейнер с кремнием из ОК и поместили его в бассейн выдержки для спада радиоактивности на 2-е суток. После спада активности извлекли из контейнера 3-ю контрольную шайбу, произвели отжиг, измерили ее кон, рассчитали набранный флюенс ф3 (столбец 12) облучения за t1+t2+t3=tфакт (столбец 11). По окончании 3-го цикла кремний выгружается из облучательного контейнера, проходит дезактивацию, промывку, упаковку и отправку заказчикам. Количество циклов определяется требованиями к облучаемому кремнию. Примеры нейтронно-трансмутационного легирования кремния по данной технологии сведены в табл. 1, 2, 3. Как видно из данных таблиц, отклонение задаваемого флюенса от фактически полученного после облучения кремния (столбец 13) укладывается в пределах 2%, что характеризует качество получаемой продукции. Возможность получения высококачественного монокристаллического кремния, легированного фосфором до низких значения УЭС, будет способствовать увеличению выхода годных приборов с улучшенными характеристиками в электронной и электротехнической промышленности. Использование термической обработки после окончания очередного цикла легирования позволяет значительно снизить уровень дефектности, производимой в процессе радиационного легирования, увеличить точность попадания в номинал УЭС. Таким образом, достигается сохранение монокристаллической структуры слитка кремния после облучения большими интегральными потоками нейтронов и снижение погрешности попадания в номинал УЭС. Использование предлагаемого способа получения легированных фосфором монокристаллов кремния повышает качество радиационно-легированного до низких номиналов УЭС кремния: снижает разброс УЭС; позволяет сохранить монокристаллическую структуру слитка, что в конечном итоге приводит к снижению внутренних механических напряжений и повышению времени жизни неосновных носителей заряда. Используемая литература
1. Смирнов Л.С. и др. "Легирование полупроводников методом ядерных реакций", Новосибирск, Наука, 1981 г., с.138. 2. Новости физики твердого тела, выпуск 11, под редакцией Дж. Миза, "Нейтронное трансмутационное легирование полупроводников", Изд-во Москва, МИР, 1982 г. 3. Патент Российской Федерации RU 2008373 С1, "Способ нейтронно-трансмутационного легирования кремния". 4. DЕ 2516514 А, Simens AG 21.10.1976г. 5. Патент Российской Федерации RU 2089011 С1, "Способ нейтронно-трансмутационного легирования кремния".
Класс C30B31/20 легирование путем облучения электромагнитными волнами или облучения частицами
Класс H01L21/263 с высокой энергией