катализатор для получения ароматических углеводородов паровой конверсией бензиновых фракций

Классы МПК:B01J23/02 щелочных или щелочноземельных металлов или бериллия
B01J23/36 рений
B01J23/72 медь
B01J21/04 оксид алюминия
C07C15/00 Циклические углеводороды, содержащие только шестичленные ароматические кольца в качестве циклической части
Автор(ы):
Патентообладатель(и):Акционерное общество открытого типа "ВНИИНефтехим"
Приоритеты:
подача заявки:
2001-01-23
публикация патента:

Изобретение относится к катализаторам для получения ароматических углеводородов из бензиновых фракций нефти конверсией с водяным паром. Описан катализатор, содержащий родий и рений на окиси алюминия и дополнительно медь и/или калий при следующем соотношении компонентов, мас.%: родий 0,2-1,0, рений 0,4-2,0, медь 0,05-2,0 и/или калий 0,1-4,0, окись алюминия остальное. Катализатор применяют для ароматизации бензиновых фракций, содержащих в основном парафиновые углеводороды. Катализатор обладает более высокой активностью и селективностью. 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Катализатор для получения ароматических углеводородов паровой конверсией бензиновых фракций, содержащий родий и рений на окиси алюминия, отличающийся тем, что он дополнительно содержит медь и /или калий при следующем соотношении компонентов, мас.%:

Родий - 0,2-1,0

Рений - 0,4-2,0

Медь и/или калий - 0,1-4,0

Окись алюминия - Остальноет

Описание изобретения к патенту

Изобретение относится к области производства катализаторов для получения ароматических углеводородов из бензиновых фракций нефти конверсией с водяным паром.

Для получения ароматических углеводородов из прямогонных бензиновых фракций обычно используют процесс каталитического риформинга, осуществляемый на алюмоплатиновых катализаторах. Однако в этом процессе наиболее ценный ароматический углеводород - бензол образуется в меньшем количестве, чем алкилбензолы. Так, при риформинге фракции с температурой кипения 62-105oС бензол и толуол получают соответственно с выходом 9-11 и 18-19% (Сулимов А. Д. Производство ароматических углеводородов из нефтяного сырья. М.: Химия. 1975 - 303 с.).

Известен катализатор для ароматизации бензиновых фракций конверсией с водяным паром, содержащий родий на окиси алюминия. На этом катализаторе и в данном способе бензол образуется в качестве основного продукта (авторское свидетельство СССР 349292, кл. С 07 С 3/58, oп. БИ, 1973, 35). Однако этот катализатор обладает низкой селективностью и активностью.

Наиболее близким к предлагаемому катализатору для ароматизации бензиновых фракций конверсией с водяным паром является катализатор, содержащий родий и один или несколько элементов, выбранных из групп, содержащей германий, рений, свинец, серу, железо, цинк на носителе - окиси алюминия (авторское свидетельство СССР 99971465 кл.С 07 С 15/00, oп. БИ, 1982, 41 - прототип).

Наиболее эффективная - композиция, содержащая в качестве промотора рений. Однако даже на этом катализаторе выход ароматических углеводородов и селективность их образования недостаточно высоки. При конверсии фр.62-105oС при выходе жидкого продукта 53% выход ароматических углеводородов не превышает 34%. Значительная часть сырья подвергается неизбирательной конверсии в газообразные продукты (Н2, СО2, СО, СН4). С целью повышения активности и селективности катализатора предложен катализатор, содержащий родий и рений на окиси алюминия и дополнительно содержащий один или два элемента из группы медь и калий при следующем соотношении компонентов, мас.%:

Родий - 0,2-1,0

Рений - 0,05-2,0

Медь и/или калий - 0,1-4,0

Существенным отличительным признаком предлагаемого катализатора является наличие в нем одного или двух элементов из группы медь и калий.

Предлагаемый катализатор применяют для ароматизации бензиновых фракций, содержащих в основном парафиновые и нафтеновые углеводороды. К такому сырью относятся прямогонные бензиновые фракции нефти, рафинаты, остающиеся после извлечения ароматических углеводородов, содержащие парафиновые углеводороды. В качестве модели для сравнения катализаторов удобно использовать н-гептан. Как и при каталитическом риформинге на алюмоплатиновых катализаторах из гептана образуется толуол.

Однако при конверсии с водяным паром на предлагаемом катализаторе значительная часть н-гептана превращается в бензол.

В прямогонных фракциях присутствуют также нафтеновые углеводороды, например метилциклогексан. При проведении процесса с водяным паром он не только дегидрируется с образованием толуола, но также превращается в бензол.

Гептан является наиболее трудно ароматизуемым углеводородом. Поэтому для сопоставления активности и селективности катализаторов его использование в качестве модельного углеводорода предпочтительно.

Активность катализатора при ароматизации гептана с водяным паром оценивается по суммарному выходу ароматических углеводородов на пропущенное сырье, в мол.%. Чем выше выход ароматических углеводородов на пропущенный гептан в одинаковых или близких условиях опыта, тем активнее катализатор. Селективность катализатора определяется выходом ароматических углеводородов на прореагировавший гептан в мол.%.

Глубина превращения гептана включает степень ароматизации и неизбирательной конверсии исходного углеводорода.

При работе на бензиновой фракции об активности катализатора удобно судить по выходу ароматических углеводородов на пропущенное сырье, выход при этом дается в мас.%. О селективности можно судить по выходу жидкого продукта С+ 5, включающего ароматические и непревращенные неароматические углеводороды. Катализатор тем селективнее, чем больше выход жидкого продукта при таком же или большем выходе ароматических углеводородов.

Катализатор применяют при температурах 400-600oС, атмосферном или повышенном до 2 МПа давлении, при соотношении вода:сырье по объему жидкости в пределах 0,5-2. Катализатор позволяет увеличить выход ароматических углеводородов до 47,2 мол.% на пропущенное сырье (н-С7) на 4-6 абс.%) и селективность ароматизации примерно на такую же величину (селективность составила 50,5 мол.%).

Катализатор готовят известным способом путем пропитки носителя - окиси алюминия растворами соединений указанных металлов. В состав пропиточных растворов помимо соединений родия и рения вводят соли меди и калия. Пропитка может быть использована как одноступенчатая, так и двухступенчатая.

Промышленная применимость предлагаемого катализатора иллюстрируется примерами.

ПРИМЕР 1.

В качестве сырья используют н-гептан. Опыт проводят на катализаторе, содержащем в %: 0,6 родия, 0,6 рения, 0,6 меди 98,2 катализатор для получения ароматических углеводородов   паровой конверсией бензиновых фракций, патент № 2193920-окиси алюминия.

Катализатор готовят пропиткой 10 г катализатор для получения ароматических углеводородов   паровой конверсией бензиновых фракций, патент № 2193920-окиси алюминия (фракция 0,5-1 мм, насыпной вес 0,75 г/см3, объем пор 0,45 cм3/г) 7 см3 водного раствора HReО4, RhCl3катализатор для получения ароматических углеводородов   паровой конверсией бензиновых фракций, патент № 21939202O, CuCl2катализатор для получения ароматических углеводородов   паровой конверсией бензиновых фракций, патент № 21939202H2O, соляную кислоту. В пересчете на металл раствор содержит по 0,06 г родия, рения, меди. Количество соляной кислоты в пересчете на НСl 0,13 г. После пропитки катализатор сушат при 50, 110 и 200oС по 3 ч, затем прокаливают в токе воздуха при 500oС. Далее катализатор в реакторе восстанавливают водородом, подаваемым с объемной скоростью 1000 ч-1 и проводят опыт.

Условия опыта: атмосферное давление, температура 520 и 540oС, объемная скорость подачи гептана 1,7 ч-1, объемное соотношение вода:гептан 1:1 (по жидкости), выходы ароматических углеводородов на пропущенный гептан и селективность их образования в указанных условиях приведены в табл.1. Состав газообразных продуктов в об.% при 520 и 540oС (приведен в табл.А).

Составы газообразных продуктов в опытах, приведенных в последующих примерах, аналогичны вышеуказанным.

ПРИМЕР 2.

Опыт проводят на катализаторе, содержащем в %: 0,6 родия, 0,6 рения, 0,1 меди и в тех же условиях, как в примере 1, при температуре 540oС. Результаты опыта приведены в табл.1.

ПРИМЕР 3.

Опыт проводят на катализаторе, содержащем в %: 0,6 родия, 0,6 рения и 1,0 меди, остальное окись алюминия. Опыт с гептаном проводят при температуре 540oС и прочих условиях примера 2. Результаты опыта представлены в табл.1.

ПРИМЕР 4.

Катализатор содержит в %: 0,6 родия, 0,6 рения и 0,5 калия, остальное - окись алюминия. Опыт проведен при температуре 500oС в условиях примера 2. Результаты опыта приведены в табл.1.

ПРИМЕР 5.

Катализатор содержит в %: 0,6 родия, 0,6 рения и 2,0 калия на окиси алюминия. Опыт проведен при температуре 500oС и прочих условиях примера 2. езультаты опыта приведены в табл.1.

ПРИМЕР 6.

Катализатор содержит в %: 0,6 родия, 0,6 рения и 0,6 меди и 0,5 калия, остальное - окись алюминия. Опыты с гептаном проводят при температурах 500 и 520oС в условиях примера 2. Результаты опытов помещены в табл.1.

ПРИМЕР 7.

Катализатор содержит в %: 1,0 родия, 2,0 рения, 2,0 меди, 2,0 калия, остальное окись алюминия. Опыт с гептаном проводили при температуре 520oС и прочих условиях примера 2. Результаты опыта представлены в табл.1.

ПРИМЕР 8 (для сравнения).

В качестве сырья используют прямогонную бензиновую фракцию 62-105oС. Характеристика сырья: плотность при 20oС - 0,7043 г/см3. Углеводородный состав, мас. %: парафиновые - 63,3, нафтеновые - 33,7, ароматические - 3,0. Содержание серы менее 1 ррм.

Опыт проводят на катализаторе, содержащем, мас.%: 0,6 родия, 0,4 рения, остальное - окись алюминия. Катализатор готовят пропиткой 60 см3 (46,8 г) шариковой окиси алюминия. Диаметр шариков 2 мм, удельная поверхность носителя 210 м2/г, насыпная плотность 0,78 г/см3, 55 мл пропиточного водного раствора содержит треххлористый родий (RhСl3катализатор для получения ароматических углеводородов   паровой конверсией бензиновых фракций, патент № 21939202O) и рениевую (НrеO4) кислоту в количестве соответственно 0,28 г и 0,42 г в пересчете на металл. В раствор добавлено 1,5 г соляной кислоты в пересчете на НСl. После 5 ч перемешивания сливают избыток раствора, катализатор сушат при 50, 110 и 130oС (по 3 ч), а затем прокаливают в токе воздуха при 500oC. Опыт проводят на пилотной установке с загрузкой 60 см3 катализатора. Температура опыта 480oС, давление 0,7 МПа (изб.) объемная скорость подачи сырья 1,3 ч-1 (80 мл/ч). Соотношение вода-сырье по объему жидкостей 1:1 (по 80 мл/ч). Выход жидкого продукта С5 и выше - 52,8%, выход ароматических углеводородов 33,9 мac.%, выход бензола 22,2%, толуола 10,6%, ксилолов 1,1 маc.%.

Состав газообразных продуктов в об.%:

H2 40, CO 0,2, CO2 14,6, CH4 41,0, C2-C4 4,2.

ПРИМЕР 9.

Катализатор содержит в мас.%: 0,6 родия, 0,4 рения, 1,1 калия, остальное - окись алюминия. Катализатор готовят пропиткой катализатора карбонатом калия с последующей сушкой и прокалкой при 500oС. При работе на бензиновой фракции 62-105oС под давлением 0,7 МПа (изб.), температуре 480oС, объемной скорости подачи сырья 1,3 ч-1, объемном (по жидкости) соотношении вода:сырье 1: 1. Выход жидкого продукта С5 и выше составил 53,2 мас.%, в том числе выход ароматических углеводородов 35,2%. Выход бензола 22,9, толуола 11,1%, ксилолов 1,2%.

Состав газообразных продуктов, об.%:

H2 47,7, CO 1,0, CO2 14,2, CH4 30,3, C2-C4 6,8.

ПРИМЕР 10.

Катализатор содержит в мас.%: 0,6 родия, 0,6 рения, 1,1 калия, 0,35 меди, остальное - окись алюминия. Катализатор готовят на носителе, характеристика которого приведена в примере 8.

При работе на бензиновой фракции 62-105oС под давлением 0,7 МПа (изб.), температуре 480oС, объемной скорости подачи сырья 1,3 ч-1, объемном (по жидкости) соотношении вода:сырье 1:1, выход жидкого продукта С5 и выше составил 57,5 мас.%, в том числе выход ароматических углеводородов 38,6%. Выход бензола 25,5%, толуола 11,9%, ксилолов 1,2%.

Состав газообразных продуктов, об.%:

H2 44,9, CO 0,8, CO2 13,4, CH4 35,0, C2-C4 5,9.

Различные составы катализаторов, приготовленных аналогично примеру 1 испытывают в условиях и на сырье по примеру 8.

Показателем активности при работе на бензиновой фракции служит суммарный выход ароматических углеводородов, а показателем селективности - выход жидкого продукта (С5 и выше).

Результаты испытания предложенного катализатора для конверсии бензиновой фракции с водяным паром представлены в табл.2.

Класс B01J23/02 щелочных или щелочноземельных металлов или бериллия

способ дегидрирования циклогексанола в циклогексанон -  патент 2525551 (20.08.2014)
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)
способ одновременного получения ароматических углеводородов и дивинила в присутствии инициатора пероксида водорода -  патент 2509759 (20.03.2014)
катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота -  патент 2480281 (27.04.2013)
катализатор риформинга углеводородов и способ получения синтез-газа с использованием такового -  патент 2475302 (20.02.2013)
катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата -  патент 2462307 (27.09.2012)
способ получения алкоксилированных алкиламинов/алкиловых эфиров аминов с узким распределением -  патент 2460720 (10.09.2012)
катализатор, способ его получения (варианты) и способ жидкофазного алкилирования изобутана олефинами c2-c4 в его присутствии -  патент 2457902 (10.08.2012)

Класс B01J23/36 рений

катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления -  патент 2523015 (20.07.2014)
носитель, содержащий муллит, для катализаторов для получения этиленоксида -  патент 2495715 (20.10.2013)
способ получения олефиноксида -  патент 2476266 (27.02.2013)
катализатор для риформинга бензиновых фракций и способ его приготовления -  патент 2471854 (10.01.2013)
способ получения пропилена и бутена-1 -  патент 2457900 (10.08.2012)
катализатор, способ его получения и способ одностадийного синтеза пропилена из этилена -  патент 2427421 (27.08.2011)
биметаллические катализаторы алкилирования -  патент 2419486 (27.05.2011)
способ переработки смесей алифатических спиртов, содержащих глицерин -  патент 2405762 (10.12.2010)
катализатор и способ получения алкано-олефиновых углеводородов в его присутствии -  патент 2391133 (10.06.2010)
висмут- и фосфорсодержащие носители для катализаторов, катализаторы риформинга на их основе, способ приготовления и способ риформинга нефти -  патент 2310506 (20.11.2007)

Класс B01J23/72 медь

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения фенилэтинил производных ароматических соединений -  патент 2524961 (10.08.2014)
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
катализатор конверсии водяного газа низкой температуры -  патент 2491119 (27.08.2013)
системы и способы удаления примесей из сырьевой текучей среды -  патент 2490310 (20.08.2013)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2489207 (10.08.2013)
способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном -  патент 2484898 (20.06.2013)
способы удаления примесей из потоков сырья для полимеризации -  патент 2480442 (27.04.2013)

Класс B01J21/04 оксид алюминия

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ конверсии оксидов углерода -  патент 2524951 (10.08.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
шариковый катализатор крекинга "адамант" и способ его приготовления -  патент 2517171 (27.05.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2516702 (20.05.2014)
способ получения наноструктурных каталитических покрытий на керамических носителях для нейтрализации отработавших газов двигателей внутреннего сгорания -  патент 2515727 (20.05.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)

Класс C07C15/00 Циклические углеводороды, содержащие только шестичленные ароматические кольца в качестве циклической части

катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
получение алкилированных ароматических соединений -  патент 2528825 (20.09.2014)
сохранение энергии при дистилляции тяжелых углеводородов -  патент 2527961 (10.09.2014)
энергосбережение при ректификации тяжелых углеводородов -  патент 2527284 (27.08.2014)
способ алкилирования бензола изопропиловым спиртом или смесью изопропилового спирта и пропилена -  патент 2525122 (10.08.2014)
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
способ получения фенилэтинил производных ароматических соединений -  патент 2524961 (10.08.2014)
способ получения ароматических углеводородов -  патент 2523801 (27.07.2014)
адсорбционный способ разделения c8 ароматических углеводородов -  патент 2521386 (27.06.2014)
способ алкилирования ароматических углеводородов с использованием алюмосиликатного цеолита uzm-37 -  патент 2518074 (10.06.2014)
Наверх