способ определения электрической прочности, времени релаксации и проводимости изоляции электрических проводов и кабелей

Классы МПК:G01R31/12 испытание диэлектрика на электрическую прочность или пробивное напряжение 
Автор(ы):, , , , ,
Патентообладатель(и):Иркутский государственный университет
Приоритеты:
подача заявки:
2000-08-10
публикация патента:

Изобретение относится к электроизмерительной технике и может быть использовано, в частности для проверки качества нескольких образцов поливинилхлоридной (ПФХ) изоляции электрических проводов и кабелей. Задачей изобретения является создание способа определения электрической прочности, позволяющего повысить поляризующее напряжение, что очень важно в случае исследования толстых слоев изоляции и расширить количество электротехнических характеристик при упрощении процесса без снижения точности. Поставленная задача достигается тем, что в известном способе, включающем помещение испытуемого образца на поверхность вращающего диска, воздействие электромагнитным полем на испытуемый образец, регистрацию максимального значения электретной разности потенциалов при поляризации этого образца в электромагнитном поле коронного разряда, определение электрической прочности, испытуемый образец, закрепленный в калиброванные отверстия кассеты, помещают в трансформаторное масло, электрическую прочность определяют компенсационным методом, время релаксации измеряют после прекращения воздействия электромагнитного поля на испытуемый образец, а проводимость вычисляют, исходя из времени релаксации и диэлектрической проницаемости образца по определенной зависимости. 1 ил.
Рисунок 1

Формула изобретения

Способ определения электрической прочности, времени релаксации и проводимости изоляции электрических проводов и кабелей, включающий помещение испытуемого образца на поверхность вращающего диска, воздействие электромагнитным полем на испытуемый образец, регистрацию максимального значения электретной разности потенциалов при поляризации этого образца в электромагнитном поле коронного разряда, определение электрической прочности, отличающийся тем, что испытуемый образец закрепляют в калиброванных отверстиях кассеты, которую размещают на поверхности вращающегося диска, помещают в трансформаторное масло, электрическую прочность определяют компенсационным методом, а время релаксации измеряют после прекращения воздействия электромагнитного поля на испытуемый образец, причем проводимость образца определяют по формуле

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 = способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 21950020/способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002

где способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 - проводимость, Ом-1м-1;

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 - диэлектрическая проницаемость поливинилхлорида (табличное значение);

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 21950020-8,85способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 219500210-12 Ф/м;

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 - время, с.

Описание изобретения к патенту

Изобретение относится к электроизмерительной технике и может быть использовано, в частности для проверки качества нескольких образцов поливинилхлоридной (ПВХ) изоляции электрических проводов и кабелей.

Известен способ испытания электромагнитных аппаратов на электрическую прочность /1/, включающий помещение испытуемого аппарата в камеру и подачу на него напряжения. По достижении величины электрической прочности ионизированного воздуха, соответствующей нормируемому понижению давлению, прекращают измерение электрической прочности воздуха и измеряют электрическую прочность испытуемого ЭМКА.

Известен способ контроля качества изоляционного покрытия провода /2/, состоящий в том, что на него воздействуют нарастающим напряжением, а о качестве изоляции судят по отношению напряжения пробоя.

Известен способ проверки изоляции движущегося изолированного провода /3/ путем протягивания его через измерительное кольцо, соединенное с чувствительным электрическим усилителем. При прохождении дефектного места диэлектрического покрытия провода в цепи электрометрического усилителя наблюдается соответствующий импульс тока.

Известен способ определения структурной электрической прочности пленочных диэлектрических материалов [4], заключающийся в том, что испытуемый образец располагается в жидком диэлектрике между цилиндрическими электродами и подают напряжение до пробоя испытуемого образца.

Недостатком известных способов является то, что они не позволяют определить электрическую прочность, величину релаксации и проводимости нескольких образцов из-за ограниченных технических возможностей.

Ближайшим аналогом является способ определения электрической прочности твердых диэлектриков /5/, при котором эталонный образец с известной электрической прочностью помещают на вращающийся диск, регистрируют электретную разность потенциалов эталонного образца для определения градуировочного коэффициента. Рядом с эталонным образцом помещают испытуемый образец, воздействуют на него электромагнитным полем, регистрируют максимальное значение электретной разности потенциалов при поляризации этого в электромагнитном поле коронного разряда и определяют величину электрической прочности по градуировочному коэффициенту.

Недостатком известного способа является невозможность получения высоких поляризующих напряжений при малых расстояниях от коронирующего электрода до исследуемого образца, поскольку поляризация в известном способе осуществляется в воздушной атмосфере. Кроме того, он сложен из-за необходимости определения градуировочного коэффициента с помощью эталонного образца.

Задачей изобретения является создание способа определения электрической прочности, позволяющего повысить поляризующее напряжение, что очень важно в случае исследования толстых слоев изоляции и расширить количество электротехнических характеристик при упрощении процесса без снижения точности.

Поставленная задача достигается тем, что в известном способе, включающем помещение испытуемого образца на поверхность вращающего диска, воздействие электромагнитным полем на испытуемый образец, регистрацию максимального значения электретной разности потенциалов при поляризации этого образца в электромагнитном поле коронного разряда, определение электрической прочности, испытуемый образец, закрепленный в калиброванные отверстия кассеты, помещают в трансформаторное масло, электрическую прочность определяют абсорбционно-компенсационным методом, время релаксации измеряют после прекращения воздействия электромагнитного поля на испытуемый образец, а проводимость вычисляют исходя из времени релаксации и диэлектрической проницаемости образца.

Измерение электротехнических характеристик изоляции абсорбционно-компенсационным методом в трансформаторном масле позволяет повысить поляризующее напряжение, упрощает процесс без снижения его точности и позволяет исследовать изделия в целом без удаления сердцевины проводов или кабелей при расширении количества показателей качества.

Характерной и отличительной особенностью способа является то, что измерения производятся в жидкой изолирующей среде.

Помещение испытуемых образцов в калиброванные отверстия кассеты обеспечивает их надежное закрепление при вращении в трансформаторном масле и хороший электрический контакт, необходимый для точного измерения.

Способ осуществляется следующим образом.

Способ поясняется чертежом, на котором представлена схема устройства для определения электрической прочности.

Устройство содержит коронирующий электрод 1, испытуемый образец 2, закрепленный в калиброванном отверстии кассеты, расположенной на диске 3, установленном с возможностью вращения. Имеется измерительный электрод 4, резистор 5, проходная емкость 6, источник постоянного напряжения компенсации 7, осциллограф 8, электродвигатель 9, низковольтный источник напряжения питания электродвигателя 10, электронно-счетный частотомер 11 и специальная металлическая или диэлектрическая емкость, в которую заливается трансформаторное масло 12 и на которой в виде крышки закрепляется измерительный релаксометр.

В металлическую или диэлектрическую емкость 12 заливают тщательно очищенное трансформаторное масло, в которое погружают диск электретного релаксометра.

Испытуемые образцы 2 закрепляют в калиброванных отверстиях кассеты. Размещенной на диске 3. На клеммы электродвигателя 9 от источника 10 подают необходимое напряжение, задавая тем самым скорость вращения диска 3 в трансформаторном масле, контролируемую частотометром 11 и синхронизированную с частотой развертки осциллографа 8. На коронирующий электрод 1, также погруженный в трансформаторное масло, подают плавно нарастающее высокое поляризующее напряжение до прекращения роста бегущего на экране осциллографа 8 импульсного сигнала от каждого испытуемого образца 2. Затем сигнал компенсируют при постоянном напряжении источника 7, ток короткого замыкания которого ограничивается резистором 5. Попадание постоянного напряжения компенсации на вход осциллографа 8 предотвращается проходной емкостью 6. Степень поляризации электроизоляционного материала каждого образца 2 в трансформаторном масле регистрируется с помощью измерительного электрода 4.

При достижении пробивного поляризующего напряжения имеет место насыщение величины измеряемых сигналов, свидетельствующее о достижении критического значения напряженности электрического поля абсорбционного заряда. Таким образом регистрируют максимальное значение электретной разности потенциалов в трансформаторном масле. Измерив также амплитуду импульса, определяют пробивное напряжение, соответствующее электрической прочности образца 2 в трансформаторном масле. Выключив коронирующий электрод 1 следят за релаксацией сигнала от каждого образца 2 во времени, т.е. определяют время релаксации абсорбционного заряда в трансформаторном масле. Проводимость каждого образца 2 рассчитывают по результатам измерения времени релаксации абсорбционного заряда после отключения поляризующего напряжения.

Пример.

Специальную карусель электретного релаксометра (например такую как /5/) погружают в специальную диэлектрическую или металлическую емкость с предварительно очищенным и просушенным трансформаторным маслом. Масло должно покрывать диск и испытуемые образцы электрической изоляции слоем не менее 30 мм. При этом острие коронирующего высоковольтного поляризующего электрода должно находиться в трансформаторном масле на глубине не менее 10 мм от поверхности масла. Измерительный электрод электретного релаксометра может располагаться как в среде трансформаторного масла, так и на воздухе, на небольшом расстоянии от поверхности трансформаторного масла. На клеммы электродвигателя 9 от источника 10 подают постоянное напряжение питания от 0 до 30 В. В зависимости от подаваемого напряжения скорость вращения электродвигателя и соответственно скорость вращения диска 3 может меняться в пределах от 0 до 3000 об/мин. На коронирующий электрод 1, погруженный в трансформаторное масло подают поляризующее постоянное или импульсное напряжение от 10 до 70 кВ. На экране осциллографа 8 появляется импульс напряжения 180 мВ, который компенсируется при постоянном напряжении 3600 В источника 7. Таким образом электрическая прочность образца ПВХ изоляции составляет 3600 В.

После отключения поляризующего высокого напряжения измеряют время релаксации абсорбционного заряда в трансформаторном масле. Для ПВХ изоляции проводов время релаксации составляет 20 сек. Проводимость образца 2 рассчитывают по формуле

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 = способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 21950020/способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002

где способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 - проводимость, Ом-1м-1;

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 - диэлектрическая проницаемость поливинилхлорида (табличное значение);

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 21950020 - 8,85*10-12 Ф/м;

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 - время, с.

Для образцов ПВХ изоляции проводов

способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002=3*8,85*10-12/20=1,32*10-12 Ом-1м-1.

Необходимо подчеркнуть, что величина измеряемого сигнала в трансформаторном масле становится в способ определения электрической прочности, времени   релаксации и проводимости изоляции электрических проводов и   кабелей, патент № 2195002 раз меньше по сравнению с этим же сигналом, измеренным в воздушной среде.

Несомненным преимуществом проведения измерений в трансформаторном масле является возможность для тех же межэлектродных расстояний создавать значительно большие значения поляризующего высоковольтного напряжения.

Источники информации, принятые во внимание

1. А.С. СССР 1636889, G 01 R 31/12, 1988 г.

2. А.С. СССР 1370631, G 01 R 31/12, 1986 г.

3. Заявка ФРГ 2826528, G 01 R 31/12, 1980 г.

4. А.С. СССР 1751701, G 01 R 31/12, 1989 г.

5. Патент РФ 2086995, G 01 R 31/12, 1997 г.

Класс G01R31/12 испытание диэлектрика на электрическую прочность или пробивное напряжение 

способ контроля качества изоляции электротехнических изделий -  патент 2526591 (27.08.2014)
устройство для испытания аппаратов высоковольтной техники -  патент 2522117 (10.07.2014)
способ оценки оставшегося срока службы высоковольтной изоляции -  патент 2516613 (20.05.2014)
устройство для определения пробивного напряжения жидких диэлектриков -  патент 2507524 (20.02.2014)
испытательная система для проверки импульсным напряжением электрических высоковольтных компонентов -  патент 2505829 (27.01.2014)
устройство мониторинга частичных разрядов -  патент 2505828 (27.01.2014)
портативное устройство детектирования частичного разряда -  патент 2498332 (10.11.2013)
испытательная система для испытания переменным напряжением электрических высоковольтных компонентов -  патент 2497138 (27.10.2013)
способ определения пробивного потенциала изоляционного промежутка высоковольтного устройства -  патент 2497137 (27.10.2013)
определение ухудшенной изолирующей способности в изоляции, предусмотренной между двумя объектами индуктивного рабочего элемента -  патент 2495445 (10.10.2013)
Наверх