способ получения пористого истираемого материала из металлических волокон и изделие, полученное этим способом

Классы МПК:C22C1/08 сплавы с открытыми или скрытыми порами 
C22C49/14 характеризуемые волокнами или нитями
B22F3/093 с использованием вибрации
B22F3/16 с последовательным или повторным проведением процесса уплотнения и спекания 
Автор(ы):, , ,
Патентообладатель(и):Государственное предприятие "Всероссийский научно- исследовательский институт авиационных материалов"
Приоритеты:
подача заявки:
2001-01-09
публикация патента:

Изобретение относится к машиностроению, в частности к способу получения истираемых уплотнений проточной части компрессора и турбины газотурбинного двигателя, а также может быть использовано в других областях техники. Техническим результатом изобретения является получение пористого истираемого материала с высокой пористостью до 90%, имеющего низкую твердость, высокие истираемость и стойкость к абразивному износу. Предложен способ получения пористого истираемого материала из дискретных металлических волокон, включающий укладку волокон в пресс-форму, прессование и спекание. Прессование осуществляют с одновременным приложением вибрации, затем после спекания осуществляют дополнительное уплотнение материала для получения пористости до 90%. Прессование осуществляют при давлении от 5 до 50 МПа при одновременном приложении вибрации с частотой 1-10 Гц и амплитудой от 0,2 до 0,8 мм. Спекание производят в вакууме или защитной атмосфере при температуре 0,75-0,85 от температуры плавления материала. В качестве металлических волокон используют дискретные волокна с соотношением диаметра и длины 1:(30-500) и выполнены они из металлов или сплавов с высокими жаростойкими свойствами. Дополнительное уплотнение осуществляется в пресс-форме или пропусканием через валки. 2 с. и 5 з.п. ф-лы, 1 табл.
Рисунок 1

Формула изобретения

1. Способ получения пористого истираемого материала из металлических волокон, . включающий уплотнение волокон в пресс-форме, прессование и спекание, отличающийся тем, что в качестве металлических волокон используют дискретные волокна с соотношением диаметра и длины 1:(30способ получения пористого истираемого материала из   металлических волокон и изделие, полученное этим способом, патент № 2201989500), прессование осуществляют с одновременным приложением вибрации, а после спекания проводят дополнительное уплотнение материала для получения пористости до 90%.

2. Способ по п. 1, отличающийся тем, что прессование осуществляют при давлении от 5 до 50 МПа.

3. Способ по п.1 или 2, отличающийся тем, что вибрацию осуществляют с частотой 1-10 Гц и амплитудой от 0,2 до 0,8 мм.

4. Способ по любому из пп.1-3, отличающийся тем, что спекание производят в вакууме или защитной атмосфере при температуре 0,75-0,85 от температуры плавления материала.

5. Способ по любому из пп.1-4, отличающийся тем, что дополнительное уплотнение материала осуществляют в пресс-форме или путем пропускания через валки.

6. Способ по п.1, отличающийся тем, что дискретные волокна выполнены из металлов или сплавов с высокими жаростойкими свойствами.

7. Изделие из пористого истираемого материала, отличающееся тем, что оно выполнено по способу по любому из пп.1-6.

Описание изобретения к патенту

Изобретение относится к области машиностроения, в частности к способу получения истираемых уплотнений проточной части компрессора и турбины ГТД, а также может быть использовано в газо-, нефтеперекачивающих установках для изготовления фильтров, работающих при высоких температурах и в качестве шумоглушителей.

Решение проблемы создания надежных уплотнительных материалов обеспечивает эффективную работу газовых двигателей при существенном снижении удельного расхода топлива, обусловленном минимизацией зазора между статорной и роторной частями двигателя.

Уплотнительные материалы отличаются противоречивостью предъявляемых к ним требований: сочетание высокой истираемости и эрозионной стойкости, необходимой термо- и жаростойкости. Уплотнительные материалы должны легко срабатываться при врезании в них рабочих лопаток или гребней лабиринтов, минимально их изнашивая, а также обладать способностью давать при врезании достаточно мелкие продукты износа, не забивающие каналы охлаждения лопаток.

Известен способ изготовления истираемого материала для уплотнения радиальных зазоров газовых турбин, включающий смешивание компонентов и заполнение сотовых ячеек. Перед операцией заполнения сотов смесь компонентов дополнительно гранулируют на связующем. Приводятся примеры получения гранул размерами 0,25-0,8 мм на различных связующих с последующим их никелированием и заполнением ими сотов, затем спеканием (патент РФ 2039631, кл. В 22 F 3/10).

Указанный способ не обеспечивает получения истираемого материала с высокой заданной пористостью, которая способствует повышению его истираемости. Твердость материала, используемого в качестве истираемого уплотнительного материала в пределах 28-32 НВ высока, что отражается на износе контртела (лопатки, гребешки лабиринтных уплотнений).

Также известен истираемый уплотнительный материал и способ его получения (патент США 4139376, кл. В 22 F 5/00, 75/229). Уплотнительный материал состоит из сплавов системы МеСrАlY или МеСrАlSi, где Me - выбирают из группы, включающей Ni, Со, Fе. Из указанных литых сплавов получают истираемый уплотнительный материал, содержащий спеченный мат, состоящий из тонкоизмельченных металлических порошков или произвольно расположенных тонких металлических волокон или волокон и порошков.

Технологическая схема получения подобных материалов следующая: подготовка волокон с использованием водяной суспензии или смешивания порошков с жидким связующим, формирование мата путем его уплотнения и спекание в защитной атмосфере.

Истираемый материал в зависимости от состава и способа получения имеет плотность 10-50% и соответственно пористость 50-90%. Недостатком указанного материала является его низкая истираемость.

Известен способ получения высокопрочного с изменяемой пористостью спеченного изделия из металлических волокон, включающий формирование высокопрочной структуры из металлических волокон с помощью суспензии волокон в жидкой среде, фильтрование жидкости, прессование изделий и спекание в неокисляемой атмосфере (патент США 3127668, кл. 29/182).

Изготовленные по предлагаемому способу изделия из волокон имели достаточные прочностные показатели по сравнению с порошковыми материалами, но невысокие показатели пористости - 11-37%.

Указанный способ не обеспечивает получение истираемого материала, с высокой заданной пористостью, которая способствует повышению его истираемости.

Наиболее близким к предлагаемому по технической сущности является способ получения пористого спеченного материала из металлических синусоидальных волокон включающий уплотнение волокон в пресс-форме, прессование и спекание. Перед уплотнением волокна подают на сито и подвергают вибропросеиванию на вибрирующие направляющие, по которым волокна подают в пресс-форму при частоте вибрации 13-15 Гц и виброускорении 1,8-4,5 м/с2. В предлагаемом способе приводится пример получения материала с пористостью 70-75% из медных волокон, которые имели диаметр 50 мкм, длину 10-12 мм (а.с. 1822443, кл. С 22 С 1/08).

Недостатком способа является сложная технология получения материала с пористостью 70-75%. Кроме того, достаточно большие размеры волокон при врезании способны давать хрупкие продукты износа, которые изнашивают лопатки и гребешки лабиринтов. Изделие, полученное по способу-прототипу, не обеспечивает возможности его применения в качестве истираемых материалов в проточной части двигателя.

Технической задачей изобретения является создание способа получения истираемого уплотнительного материала с высокой пористостью до 90%, имеющего низкую твердость, высокие истираемость и стойкость к абразивному износу, а также изделий, полученных этим способом.

Для достижения поставленной задачи предложен способ получения пористого истираемого материала из металлических волокон, включающий уплотнение волокон в пресс-форме, прессование и спекание, отличающийся тем, что прессование осуществляют с одновременным приложением вибрации, а после спекания осуществляют дополнительное уплотнение материала для получения пористости до 90%.

Прессование осуществляют при давлении от 5 до 50 МПа при одновременном приложении вибрации с частотой 1-10 Гц и амплитудой от 0,2 до 0,8 мм.

Спекание производят в вакууме или защитной атмосфере при температуре 0,75-0,85 от температуры плавления материала.

В качестве металлических волокон используют дискретные волокна с соотношением диаметра и длины 1:(30-500) и выполнены они из металлов или сплавов с высокими жаростойкими свойствами.

Дополнительное уплотнение осуществляется в пресс-форме или пропусканием через валки.

Изделие из пористого истираемого материала получают по предлагаемому способу.

В качестве материала дискретных волокон могут быть использованы сплавы на основе железа, содержащие компоненты: никеля, кобальта, меди, хрома, алюминия, титана, кремния, иттрия, гафния; на основе никеля и его сплавов, содержащих хром, железо, алюминий, титан, кобальт, медь, кремний, иттрий, гафний и др.

Предлагаемый способ получения пористого истираемого материала при совмещении процессов прессования с вибрацией позволяет при минимальных усилиях прессования получать высокопористые материалы с достаточной прочностью при одновременной укладке металлических волокон в горизонтальной плоскости заготовки. Высокая пористость истираемого материала обеспечивает исключение износа лопаток при касании с истираемом материалом, создавая тем самым эффективную работу системы уплотнения в двигателе. Кроме того, дополнительное уплотнение позволяет получить заготовки с заданной пористостью.

Избранное соотношение диаметра и длины у дискретных волокон обеспечивает оптимальную укладку волокон для получения высокой истираемости материала и эрозионной стойкости, а пределы спекания заготовок 0,75-0,85 от температуры плавления позволяют получать достаточную когезионную прочность в точках контакта волокон при спекании.

Примеры осуществления.

В соответствии с предлагаемым способом были изготовлены образцы для проведения испытаний по определению свойств истираемого материала: истираемость (соотношение износа, уплотнительного материала к износу лопаток, потеря массы образца). Соотношение определяли по СТПI-595-14-147-85 (стандарт ВИАМ). Испытания на стенде по следующему режиму: скорость внедрения контртела в истираемый материал - 0,068 мм/с, угловая скорость вращения контртела - 117 с-1;

- стойкость материала к абразивному износу. Определяли по СТПI-595-14-148-35. Обдувка образцов частицами абразива (электрокорунда) зернистостью 100 мкм, угол атаки - 30o, давление воздуха - 0,49 МПа;

- пористость.

Пример 1.

Металлические волокна из сплава марки Х18Н9Т диаметром 10 мкм, длиной 1 мм равномерно засыпали через сито с размером ячейки 2 мм в пресс-форму. Далее пресс-форму помещали на вибропресс, включали виброустановку на прессе и прикладывали давление. Вибропрессование осуществляли по режиму: частота вибрации - 1 Гц, амплитуда вибросмещения - 0,2 мм, удельное давление прессования - 5 МПа. Спекали брикетированные заготовки в вакууме 10-4 мм рт.ст. при температуре 1200oС в течение 3 ч. После спекания произвели дополнительное уплотнение спеченной заготовки до получения требуемой плотности. Для этого спеченные заготовки пропустили через валки. Деформация осуществлялась по степенью обжатия 50%.

Пример 2.

Металлические волокна из сплава марки Х20Н80 диаметром 15 мкм, длиной 3 мм равномерно засыпали через сито с размером ячейки 2 мм в пресс-форму. Далее пресс-форму помещали на вибропресс, включали виброустановку на прессе и прикладывали давление. Вибропрессование осуществляли по режиму: частота вибрации - 5 Гц, амплитуда вибросмещения - 0,5 мм, удельное давление прессования - 20 МПа. Спекали брикетированные заготовки в вакууме 10-4 мм рт.ст. при температуре 1050oС в течение 3 ч. Спеченные заготовки подвергли дополнительному уплотнению в пресс-форме при удельном давлении 5 МПа. Получили пористость 87%.

Пример 3.

Металлические волокна из сплава марки Х20Н80 диаметром 30 мкм, длиной 5 мм равномерно засыпали через сито с размером ячейки 2 мм в пресс-форму. Далее пресс-форму помещали на вибропресс, включали виброустановку на прессе и прикладывали давление. Вибропрессование осуществляли по режиму: частота вибрации - 10 Гц, амплитуда вибросмешения - 0,8 мм, удельное давление прессования - 50 МПа. Спекали брикетированные заготовки в вакууме 10-4 мм рт.ст. при температуре 1050oС в течение 3 ч. Спеченные заготовки подвергли дополнительному уплотнению, пропустив их через валки. Получили пористость 80%.

Пример 4.

По известному способу (прототипу) изготовлены образцы из металлических волокон сплава марки Х20Н80, диаметр которых 50 мкм, длина 10-12 мм. Получена пористость - 70%.

Результаты исследований в лабораторных условиях, проведенных на образцах, изготовленных по предлагаемому способу, приведены в таблице. Для сравнения приведены свойства прототипа.

Из таблицы видно, что материалы, полученные по предлагаемому способу, обладают целым рядом преимуществ:

- по пористости выше прототипа на 30%;

- по стойкости к абразивному износу в 1,5-2 раза выше прототипа, что является показателем живучести материала в условиях высокоскоростного газового потока, содержащего абразивные частицы;

- по истираемости превосходят прототип в 2-2,5 раза.

Таким образом, предлагаемый способ обеспечивает получение материалов, обладающих высокими техническими и эксплуатационными характеристиками, в частности, при использовании в качестве уплотнительных истираемых материалов обеспечивают повышение кпд двигателей и исключают износ дорогостоящих лопаток. Кроме того, материал может найти широкое применение и в других областях народного хозяйства.

Класс C22C1/08 сплавы с открытыми или скрытыми порами 

способ получения композиционного наноматериала на основе металлического железа в порах мезопористой матрицы, обладающего магнитными свойствами -  патент 2522883 (20.07.2014)
способ получения пористого порошка никелида титана -  патент 2522257 (10.07.2014)
способ получения пористых материалов -  патент 2518809 (10.06.2014)
способ получения высокопористого ячеистого материала -  патент 2508962 (10.03.2014)
способ получения высокопористого ячеистого материала -  патент 2497631 (10.11.2013)
cпособ получения жаростойкого высокопористого проницаемого сплава -  патент 2493934 (27.09.2013)
способ формирования пеноалюминия -  патент 2492257 (10.09.2013)
способ получения открытопористого наноструктурного металла -  патент 2480310 (27.04.2013)
способ производства панелей из пеноалюминия -  патент 2479383 (20.04.2013)
способ получения пористой меди -  патент 2469118 (10.12.2012)

Класс C22C49/14 характеризуемые волокнами или нитями

Класс B22F3/093 с использованием вибрации

Класс B22F3/16 с последовательным или повторным проведением процесса уплотнения и спекания 

твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения заготовок из порошковых металлических материалов -  патент 2504455 (20.01.2014)
способ прессования труб из магниевых гранул -  патент 2486991 (10.07.2013)
способ производства заготовок из жаропрочных порошковых сплавов -  патент 2449858 (10.05.2012)
способ получения изделий из пористых материалов искусственного и естественного происхождения с помощью холодного объемного деформирования -  патент 2413593 (10.03.2011)
способ изготовления ферритовых изделий -  патент 2410200 (27.01.2011)
способ получения композиционного материала на основе магниевой матрицы -  патент 2410199 (27.01.2011)
способ изготовления дисперсно-упрочненных изделий электроэрозионного назначения на основе меди -  патент 2402406 (27.10.2010)
способ получения антифрикционных порошковых материалов на основе меди -  патент 2378404 (10.01.2010)
способ прессования гранул магниевых сплавов -  патент 2370342 (20.10.2009)
Наверх