способ нанесения рутениевого покрытия

Классы МПК:C25D3/50 металлов группы платины
C25D5/18 нанесение покрытий с помощью модулированного, пульсирующего или реверсированного тока
Автор(ы):, , , , ,
Патентообладатель(и):ОАО "Рязанский завод металлокерамических приборов"
Приоритеты:
подача заявки:
2001-05-04
публикация патента:

Изобретение относится к гальванотехнике и может быть использовано в производстве электрических контактов, в том числе герметизированных. Технический результат состоит в получении электролитическим методом низкопористых, менее напряженных рутениевых покрытий, имеющих улучшенные коммутационные свойства при толщине менее 0,5 мкм и получении рутениевых покрытий без трещин при толщине более 1,5 мкм. Способ заключается в электролитическом осаждении рутениевых покрытий из электролитов, получаемых путем растворения биядерного нитридо-аква-хлоридного комплекса рутения, при этом электролиз проводят в режиме импульсного тока с параметрами: период 1 мс, скважность 10%, средняя во времени катодная плотность тока 0,5способ нанесения рутениевого покрытия, патент № 22020068,0 А/дм2. 2 табл.
Рисунок 1

Формула изобретения

Способ электролитического осаждения рутениевых покрытий из электролитов, получаемых путем растворения биядерного нитридо-аквахлоридного комплекса рутения, отличающийся тем, что электролиз проводят в режиме импульсного тока с параметрами: период 1 мс, скважность 10%, средняя во времени катодная плотность тока 0,5способ нанесения рутениевого покрытия, патент № 22020068,0 А/дм2.

Описание изобретения к патенту

Изобретение относится к гальванотехнике, в частности касается электролитического осаждения рутения на рабочие поверхности электрических контактов, например на контакт-детали герконов, которые используются в качестве коммутационных элементов в различных системах электронной техники.

Известен способ [1] электролитического рутенирования из электролита, в который рутений вводится в виде аммонийной соли биядерного нитридо-аква-хлоридного комплекса [Ru2N(Н2O)хСlу](NН4)3, где х+у=10.

Указанный электролит имеет рН 0,5способ нанесения рутениевого покрытия, патент № 22020064, содержит 5способ нанесения рутениевого покрытия, патент № 220200620 г/л рутения, 10способ нанесения рутениевого покрытия, патент № 220200650 г/л сульфаминовой кислоты. Электролиз ведется в условиях постоянного тока при плотности тока 0,25способ нанесения рутениевого покрытия, патент № 220200610 А/дм2 и при температуре 50способ нанесения рутениевого покрытия, патент № 220200675oС.

Недостатком этого способа является относительно высокая пористость гальванических рутениевых покрытий, особенно при толщинах менее 0,5 мкм, что ухудшает их контактные свойства.

Гальванические покрытия, получаемые в условиях стационарного тока из приведенного электролита, являются сильно напряженными, что приводит к образованию микротрещин при толщине рутениевого покрытия более 1,5 мкм.

Предложен способ электролитического осаждения рутениевых покрытий из электролитов, получаемых путем растворения биядерного нитридо-аква-хлоридного комплекса рутения, отличающийся тем, что электролиз проводят в режиме импульсного тока с параметрами: период 1 мс, скважность 10%, средняя (во времени) катодная плотность тока 0,5способ нанесения рутениевого покрытия, патент № 22020068,0 А/дм2.

Предлагаемый способ позволяет получать низкопористые рутениевые покрытия при толщинах менее 0,5 мкм с улучшенными коммутационными характеристиками рутениевых покрытий и без микротрещин при толщине более 1,5 мкм.

Предложенный режим был опробован в электролите, содержащем:

Рутений (мет.) - 10способ нанесения рутениевого покрытия, патент № 220200625 г/л

Сульфамат аммония - 30способ нанесения рутениевого покрытия, патент № 220200690 г/л

рН - 1,0способ нанесения рутениевого покрытия, патент № 22020062,0

Рутений вводился в виде аммонийной соли биядерного нитридо-аква-хлоридного комплекса [Ru2N(H2O)2Cl8](NH4)3.

Условия электролиза:

температура 50способ нанесения рутениевого покрытия, патент № 220200670oС;

средняя (во времени) катодная плотность тока 0,5способ нанесения рутениевого покрытия, патент № 22020068,0 А/дм2.

В указанном электролите на детали герконов, изготовленных из пермаллоя, наносились контактные покрытия.

В процессе экспериментов на источнике импульсного тока устанавливались определенные значения Т (периода) и скважности (отношение времени импульса к периоду)%, а также варьировалась средняя плотность тока (во времени) и толщина покрытия.

Были изготовлены опытные партии миниатюрных малой мощности герконов с толщиной рутения 0,2 мкм с подслоем золота толщиной 0,5 мкм. Рутений наносился в различных режимах импульсного тока. Для сравнения некоторые образцы покрывались в стационарном режиме (по прототипу [1]), Пористость электролитических покрытий оценивалась приборным методом - по потенциалу коррозии в растворе HCl 1:1. Чем более положительные значения потенциала коррозии, тем меньше пористость.

Покрытие в герконах проходило испытания на уровень и стабильность переходного электросопротивления Rпep и на износостойкость (по количеству срабатываний в коммутационных режимах:

1. - ток 5 мкА, напряжение 50 мВ, частота 100 Гц;

2. - ток 90 мА, напряжение 12 В, частота 100 Гц).

Полученные результаты представлены в табл.1.

Для герконов средней и более высокой мощности необходимо применение толщин рутениевого покрытия более 1,5 мкм по подслою золота толщиной 1,0 мкм. При таких толщинах рутениевые покрытия склонны образовывать микротрещины. В зависимости от режима нанесения предельные толщины рутениевого покрытия, при которых начинают зарождаться микротрещины, бывают различными.

Данные по опробованию режима электролиза на образование микротрещин в рутениевом покрытии представлены в табл.2.

С помощью подбора режима импульсного тока была определена предельно допустимая толщина рутениевого покрытия без микротрещин - 2,5 мкм, по сравнению с прототипом [1] - 1,5 мкм.

На основании проведенных экспериментов (табл. 1 и 2) был выбран оптимальный импульсный режим электролиза: Дк=0,5-8,0 А/дм2, Т=1 мс, скважность 10%. Увеличение периода импульсного тока с 1 до 2 мс и увеличение скважности с 10 до 20% приводит к резкому ухудшению рассмотренных параметров электролитического покрытия,

Источник информации

1. Патент США 3576724, апрель 27, 1971 г.

Класс C25D3/50 металлов группы платины

Класс C25D5/18 нанесение покрытий с помощью модулированного, пульсирующего или реверсированного тока

система и способ нанесения покрытий из металлических сплавов посредством применения гальванической технологии -  патент 2473718 (27.01.2013)
способ электролитического никелирования -  патент 2431000 (10.10.2011)
способ электролитического осаждения кобальта -  патент 2340709 (10.12.2008)
способ и установка для гальванического осаждения никеля, кобальта, сплавов никеля или сплавов кобальта с использованием периодических импульсов тока -  патент 2281990 (20.08.2006)
способ электрохимической металлизации внутренней поверхности труб -  патент 2244766 (20.01.2005)
способ повышения надежности карданных шарниров -  патент 2234008 (10.08.2004)
гальваническая ванна и способ получения твердых структурированных хромовых слоев -  патент 2202005 (10.04.2003)
способ электролитического осаждения сплава железо - молибден -  патент 2174163 (27.09.2001)
способ электролитического осаждения сплава железо-фосфор -  патент 2164560 (27.03.2001)
способ электролитического восстановления изношенных поверхностей деталей холодным твердым железнением -  патент 2147629 (20.04.2000)
Наверх