способ предупреждения беременности
Классы МПК: | A61K31/795 полимеры, содержащие серу |
Автор(ы): | СОНДЕРФЕН Эндрю Дж. (US), ПРОФИ Алберт Т. (US), ЧЕНСЕЛЛОР Тони (US), МАККИНЛЕЙ Марго (US) |
Патентообладатель(и): | ПРОСЕПТ, ИНК. (US) |
Приоритеты: |
подача заявки:
1998-04-27 публикация патента:
10.05.2003 |
Изобретение относится к способу предупреждения нежелательной беременности у индивидуума, включающему интравагинальное введение индивидууму эффективного количества состава, содержащего узко- или монодисперсный конденсационный полимер ароматической сульфокислоты и альдегида или его фармацевтически приемлемую соль, а также к способу предупреждения нежелательной беременности у индивидуума, включающему вагинальное введение геля, содержащего вышеописанный конденсационный полимер. Технический результат - способ позволяет использовать вышеописанные соединения в производстве медикамента для предупреждения беременности или контрацептивного средства. Соединения по настоящему изобретению мало раздражают или вообще не раздражают влагалище. 2 с. и 7 з.п.ф-лы, 2 табл.
Рисунок 1, Рисунок 2
Формула изобретения
1. Способ предупреждения нежелательной беременности у индивидуума, включающий интравагинальное введение индивидууму эффективного количества состава, содержащего узко- или монодисперсный конденсационный полимер ароматической сульфокислоты и альдегида или его фармацевтически приемлемую соль в физиологически приемлемом носителе, причем указанный конденсационный полимер имеет молекулярный вес менее примерно 50 кДа, или имеет в среднем от примерно 0,5 до примерно 2,0 сульфокислотных групп на одну ароматическую группу. 2. Способ по п. 1, отличающийся тем, что конденсационный полимер является конденсационным полимером нафталинсульфокислоты и формальдегида. 3. Способ по п. 2, отличающийся тем, что конденсационный полимер имеет молекулярный вес между примерно 0,7 кДа и примерно 50 кДа, более предпочтительно между примерно 1,3 кДа и примерно 30 кДа, наиболее предпочтительно между примерно 4 кДа и 12 кДа. 4. Способ по п. 2, отличающийся тем, что конденсационный полимер имеет в среднем примерно 1 сульфокислотную группу на ароматическую группу. 5. Способ по п. 1, отличающийся тем, что состав вводится непосредственно перед половым сношением. 6. Способ по п. 1, отличающийся тем, что состав является гелем, или кремом, или пеной. 7. Способ по п. 6, отличающийся тем, что полимер присутствует в составе в концентрации между примерно 1 и 10% по весу предпочтительно в концентрации, равной примерно 4% по весу. 8. Способ предупреждения нежелательной беременности у индивидуума, включающий вагинальное введение геля, содержащего конденсационный полимер нафталинсульфокислоты и формальдегида в количестве между примерно 1 и примерно 10 вес. %. 9. Способ по п. 8, отличающийся тем, что полимер имеет молекулярный вес, примерно равный 5 кДа.Описание изобретения к патенту
Многие конденсационные полимеры формальдегида и ароматических сульфокислот были описаны ранее. Патент США 4604404 и заявки на изобретения США 08/467725, 08/467725, 08/245619 и 08/156443, содержание которых включены в настоящую заявку в качестве ссылки, раскрывают сущность использования таких полимеров в качестве противовирусных агентов, действующих против вируса Herpes simplex и ВИЧ-инфекции. Однако в этих источниках отсутствуют информация или предложения по использованию таких полимеров для предупреждения беременности. Спермицидные рецептуры являются популярными формами обратимой контрацепции в США (Forrest J.D. и Fordyce R.R. Fam. Plann. Perspect. 20:112-118 (1988)). Большинство интравагинальных контрацептивных рецептур в качестве активного ингредиента содержат спермицид, ноноксинол-9 (N9). Эти рецептуры, обычно кремы, гели или пены, обычно эффективны сразу же после нанесения, и могут быть введены примерно за час до полового сношения (Hatcher R.A. et al. , "Contraceptive Technology, 16th Revised Edition, New York, Irvington Publishers (1994)). Вагинальные контрацептивные пленки, такие как "VCF" (Apothecus, Inc., Oyster Bay, NY), появились на рынке позже, по крайней мере в США. В противоположность другим интравагинальным контрацептивам, пленки необходимо вводить за несколько минут до полового сношения, чтобы гарантировать адекватное растворение и дисперсию до контакта со спермой. При использовании отдельно спермициды дают частоту неблагоприятных исходов, равную примерно 21% (то есть, обычно случайная беременность в течение первого года использования возникает у 21% партнерш, использующих эти продукты). Как сообщают, эффективность значительно повышается, если спермициды используются в комбинации с барьерными методами, например презервативами (Hatcher, R.A. et al., "Contraceptive Technology, 16th Revised Edition, New York, Irvington Publishers (1994)). Данное изобретение базируется на установлении того факта, что конденсационные полимеры ароматических сульфокислот и альдегида и их фракции, в частности полимеры формальдегида и нафталинсульфокислоты, могут препятствовать беременности или предупреждать ее. Предупреждение или препятствие беременности определяют как процесс, включающий, например, предупреждение или препятствие для оплодотворения, зачатия или имплантации оплодотворенной яйцеклетки или эмбриона в эндометрий матки у самки животного. Было установлено, что соединения по настоящему изобретению мало раздражают или вообще не раздражают влагалища. На основании этих результатов конденсационные полимеры ароматических сульфокислот и альдегида и их фракции могут быть использованы в качестве контрацептивных препаратов. Поэтому изобретение также относится к использованию описанных соединений в производстве медикамента для предупреждения беременности или контрацептивного средства. Получение конденсационных полимеров альдегидов и ароматических сульфокислот в целом известно в данной области техники. Предпочтительные полимеры имеют общую структуру:
Ароматические сульфокислоты, при использовании здесь, включают ароматические карбоциклические и гетероциклические кольца, замещенные одним или несколькими радикалами сульфокислоты (например, х может быть от 1 до 4). Ароматические карбоциклические кольца (Аr) включают, например, фенил, нафтил, тетрагидронафтил, бифенил, фенилалкилфенил, фенилалкенилфенил, феноксифенил, фенилтиофенил и феноксиалкоксифенил. Ароматические гетероциклические кольца (Аr) включают, например, пиридинил, пиримидинил, хинолинил, тиофенил, фуранил, пиразолил, имидазолил, пирролил и тиазолил. Альдегиды (CHRO), пригодные для получения соединений по данному изобретению, включают, например, параформальдегид или формальдегид, замещенный или незамещенный уксусный альдегид, пропионовый альдегид и бензальдегид. Предпочтительно альдегид является формальдегидом. Соответственно R в формуле может быть водородом, замещенным или незамещенным алкилом (предпочтительно - низшим алкилом), замещенным или незамещенным арилом (таким как фенил). Заместители включают, например, алкил, алкоксигруппу, арил, арилоксигруппу, галоген, гидроксил, аминогруппу, алкиламиногруппу, диалкиламиногруппу, карбоксильную группу, сульфонат и фосфонат. Полимер может быть свободной кислотой, сложным эфиром или фармацевтически приемлемой солью. Поэтому М может быть водородом, фармацевтически приемлемым катионом (например, щелочным металлом, щелочно-земельным металлом или аммониевой группой) или блокирующей сульфонат группой, которая будет предпочтительно расщепляться или гидролизоваться in vivo (например, линейным или разветвленным алкилом). Термин "полимер", при использовании здесь, включает любое соединение, образованное путем соединения двух или нескольких мономеров или повторяющихся элементов (например, n является целым числом, равным двум или более). Патент США 4604404 приводит примеры подходящих полимеров, пригодных для использования здесь, и способы их получения, эти данные включены сюда посредством ссылок. Полимеры также описаны в заявках США 08/467725, 08/245619 и 08/156443, содержание которых включенo в настоящую заявку в качестве ссылки. Особо предпочтительным полимером является продукт конденсации нафталинсульфокислоты и формальдегида с формулой:

где х равно 1 или 2;
R2 является водородом, алкилом, алкоксигруппой или анионной группой, такой как карбоксил и фосфонат;
М является водородом или фармацевтически приемлемым катионом. В некоторых случаях одна или несколько групп сульфокислоты могут быть необратимо заблокированы. Полимеры по настоящему изобретению также включают сополимеры, куда альдегид и/или ароматическая сульфокислота добавлены в виде смесей различных альдегидов и/или ароматических сульфокислот (таких, как определенные выше). Также включены сополимеры, куда добавлена ароматическая группа, не замещенная сульфокислотой. Например, ароматическая группа может быть карбоциклической или гетероциклической группой (которые определены выше), не замещенной или замещенной одной или несколькими группами, такими как алкильная, алкоксигруппа, арильная, арилоксигруппа, галогеновая, гидроксильная, сульфонамидная, карбоксильная или фосфонатная. Предпочтительно, чтобы молекулярный вес полимера (MB) был меньше, чем примерно 50 кДа, и/или больше, чем примерно 0,7 кДа. Более предпочтительны полимеры с молекулярным весом между примерно 1,3 и примерно 30 кДа, или между примерно 4 и примерно 12 кДа. Особенно благоприятным полимером является конденсат 2-нафталинсульфокислоты и формальдегида с молекулярным весом 5

Пример 22. Эксклюзионная хроматография для фракционирования по размеру/
Аликвоты растворов синтетических полимеров фракционировали по размеру с использованием насоса Waters M625, диодного детектора М996, системы программного обеспечения Millenium и либо двух колонок Waters Ultrahydrogel (7,8х300 мм; объемная скорость подвижной фазы 1 мл/мин) с порами 6 мкм - 250 ангстрем, либо колонки TosoHaas G3000PW на 17 мкм (21,5х600 мм), соединенной с колонкой TSK-Gel Guard PWH (21,5х75 мм; объемная скорость 3 мл/мин). Подвижная фаза состояла из 0,2 М раствора ацетата аммония (рН 6,2), приготовленного из ледяной уксусной кислоты (Baker Analysed HPLC Reagent) и гидроокиси аммония (25%, Mallinckrodt), и 35% ацетонитрила (B&J Brand). Перед использованием подвижную фазу фильтровали через нейлоновую мембрану с диаметром пор 0,45 мкм и распыляли в атмосфере гелия качества 5. Раствор синтезированных проб с 2,2-10 мг вещества в объеме воды MilliQ до 200 мкл инъецировали на колонки Ultrahydrogel, либо 40-300 мг вещества в подвижной фазе на основе воды MilliQ объемом до 2 мл (50:50, по объему) инъецировали на колонки TosoHaas с последующей обработкой ультразвуком (Branson 2200), вихревым перемешиванием и фильтрованием (0,45 мкм Acrodisc, Gelman Sciences). Собранные фракции объединяли в соответствии со временем элюции. Сопоставимые хроматографические профили при измерениях поглощения света демонстрировали в повторных опытах, и растворитель удаляли с использованием высокоскоростных вакуумных приборов Savant при высокой температуре (либо SC200 и Vapornet VN100, либо Plus SC210A). Остаток повторно растворяли в воде и повторно высушивали для удаления следов растворителя. Вещество взвешивали, растворяли в воде и нормировали до исходных концентраций, измеряя поглощение света при длине волны 290 нм по сравнению со стандартными растворами. Вещество по примеру 12, см. табл. 1 выше, фракционировали таким образом для получения фракций полимера, имевших наивероятнейший молекулярный вес (НМВ) 31 кДа (средний молекулярный вес (СМВ) 38 кДа); НМВ 16 кДа (СМВ 22 кДа); НМВ 10 кДа (СМВ 15 кДа); и НМВ 5,6 кДа (СМВ 10 кДа). Пример 23. Методология светорассеяния. Пробы подвергали аналитической жидкостной хроматографии высокого давления с использованием насоса Waters 625 и модифицированного детектора 410 RI, который содержал встроенный детектор интенсивности рассеянного лазерного излучения PD2000 (Precision Detectors, Inc., Amherst, MA). Эта система была оборудована колонкой Waters Ultra-Hydrogel 250 для гель-фильтрационной хроматографии водных растворов (внутренний диаметр 7,8 ммх300 мм, размер пор 250 ангстрем, граница эксклюзии 8х104, РЕО). Подвижная фаза состояла из 65% 0,2М ацетата аммония с рН 6,5 и 35% ацетонитрила при изократическом способе с объемной скоростью 1 мл/мин. Элюцию регистрировали при помощи RI, рассеяния света под малым (15o) и большим углом (90o), и на основании этой информации были определены диапазоны молекулярных весов. Пример 24. Фракционирование полимера
Соли, образовавшиеся в процессе нейтрализации, удаляли из полимера, полученного в примере 15, посредством процесса фракционирования при добавлении полярного органического растворителя (ацетона, этанола или метанола). Водный раствор конечной реакционной смеси (~ 10 г/20 мл) обрабатывали возрастающими количествами органических растворителей. Начальный органический растворитель приводил к образованию нижнего слоя растворенными солями. После того, как большая часть соли была удалена, производили фракционирование материала на фракции с более однородными распределениями молекулярных весов. Добавляли дополнительное количество растворителя для образования нижнего, более темного слоя. Объем добавленного органического растворителя определяли путем мониторинга двух фаз при гельпроникающей жидкостной хроматографии. В основном, вещество с более высоким молекулярным весом перемещалось в нижний слой, а вещество с меньшим молекулярным весом оставалось в верхнем слое. Когда желаемый диапазон молекулярных весов был определен, его выделяли одним из нескольких способов. Первым способом было простое удаление всего летучего растворителя из вещества (посредством сочетания ротационного испарения при пониженном давлении и вакуумного термостата). Второй способ состоял в диспергировании раствора продукта в большом избытке полярного органического растворителя (ацетона, этанола или метанола) и сборе образовавшегося твердого вещества путем фильтрации. Получение вещества в соответствии с вышеприведенным описанием реакции и процесс фракционирования дали несколько узких диапазонов молекулярных весов (~ 3К, ~ 5К, ~ 10К, ~ 25К, ЕХ 15/3, EX 15/5, EX 15/10 и EX 15/25 соответственно). Пример 25. Натриевую соль 2-нафталинсульфокислоты (1000 г) добавляли в стеклянный реактор с 8925 мл этилового спирта, 3800 мл деионизированной воды и 10 г углерода. Смесь нагревали примерно до 78oС и фильтровали через целит. Смесь охлаждали до температуры окружающей среды и выдерживали в течение примерно 6 ч. Влажные кристаллы собирали путем фильтрации и высушивали в вакуумном термостате (80oС/25" вакуума) до постоянного веса. Средний выход был равен 59%. Перекристаллизованную 2-нафталинсульфокислоту (1000 г, полученную так, как указано выше) затем соединяли с водой (866 г) и 99% серной кислотой (330 мл). Реактор герметично закрывали и нагревали при взбалтывании до примерно 105oС на масляной бане с температурой 130oС. Формальдегид (502 г, 37% водный раствор) добавляли к реактору в течение 45 мин. Реактор выдерживали в этом состоянии в течение примерно 10 ч. По ходу реакции внутреннее давление росло примерно до 11 фунтов на квадратный дюйм. После завершения реакции содержимое реактора охлаждали и разводили 500 г деионизированной воды. рН регулировали от значения ниже 1 до рН, примерно равного 7, путем добавления примерно 500 г NaOH. Реакция давала минимум около 90% нефракционированного полимера. Соли, образовавшиеся в процессе нейтрализации, удаляли при фракционировании посредством добавления 10 л ацетона, что приводило к образованию двух слоев. Нижний слой отбрасывали. К верхнему слою добавляли 2 л ацетона, что вновь приводило к образованию двух слоев, причем верхний слой отбрасывали. Примерно 600 г воды добавляли к нижнему слою вместе с примерно 1,4 л ацетона, что вновь приводило к образованию двух слоев. Нижний слой отбрасывали, верхний слой переносили в другой сосуд и обрабатывали примерно 1,2 л ацетона. Образовавшийся верхний слой отбрасывали, а к нижнему слою добавляли примерно 520 мл воды. Раствор концентрировали, переносили в вакуумный термостат и сушили при 80oС/24" вакуума до постоянного веса. Фракционирование регистрировали при помощи гельфильтрационной жидкостной хроматографии. Процесс давал выход конденсационного полимера с молекулярным весом примерно между 4000-6000 дальтон (средний выход 11%). Пример 26. Определенные количества вещества по примеру 25 (10% водный раствор), очищенной воды (USP) и молочной кислоты (1% водный раствор, весовые проценты) тщательно перемешивали в количествах, указанных в табл. 2. Во время смешивания добавляли установленное количество Carbomer 1382 (BF Goodrich, Cleveland, ОН), и взбалтывание продолжали до гидратирования Carbomer. Добавляли 50% водный раствор (весовые проценты) Троламина (Spectrum, New Brunswick, NJ) при перемешивании. Регистрировали рН. Гели разливали в 16х76 мм алюминиевые пробирки с эпоксидным покрытием и полипропиленовыми колпачками и определенным диаметром шейки 16 (Montebello). Количество налитого геля было равно примерно 3,7 г. Пробирки герметично закрывали, а затем стерилизовали в автоклаве при 121oС в течение 20 мин. Пример 27. Биологическая активность. Потенциальные раздражающие эффекты 0,1, 1 и 4% (рецептуры 3,5 и 6) концентраций полимера в рецептурах, приведенных выше (называемый далее гель PRO 2000), оценивали во влагалищах новозеландских белых кроликов. По пять крольчих в каждой из 5 групп ежедневно получали в свод влагалища дозу, равную 1 мл, геля PRO 2000, геля-носителя (рецептура 2) или 4% рецептуру с ноноксинолом-9 (Conceptrol




Класс A61K31/795 полимеры, содержащие серу