способ получения катализатора сополимеризации сопряженных диенов

Классы МПК:C08F136/04 сопряженные
C08F4/52 бор, алюминий, галлий, индий, таллий или редкоземельные элементы
C08F2/04 полимеризация в растворе
C08F4/635 алюминием или его соединениями
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно- исследовательский институт синтетического каучука им. акад. С.В. Лебедева"
Приоритеты:
подача заявки:
2001-09-04
публикация патента:

Изобретение относится к способам получения катализатора сополимеризации сопряженных диенов и может найти применение при производстве каучуков общего назначения в промышленности синтетических каучуков. Катализатор сополимеризации сопряженных диенов получают взаимодействием в углеводородном растворителе компонентов катализатора, включающих соединение редкоземельных металлов, галогенорганическое соединение, алюминийорганическое соединение и сопряженный диен. В качестве галогенорганического соединения используют четыреххлористый углерод, который предварительно подвергают взаимодействию с частью или всем количеством алюминийорганического соединения, при мольном отношении четыреххлористый углерод : алюминий, равном 0,025-0,75 как при комнатной температуре, так и при повышенной. После этого при комнатной температуре проводят смешение с остальными компонентами при мольном соотношении редкоземельный металл : алюминий : хлор : диен, равном 1:4-20:2-3:0,1-20. Способ позволяет значительно сократить расход алюминийорганического соединения, улучшить низкотемпературные свойства полимеров - снизить температуру плавления каучуков, повысить коэффициент морозостойкости резин на их основе. 1 з. п.ф-лы.

Формула изобретения

1. Способ получения катализатора сополимеризации сопряженных диенов взаимодействием в углеводородном растворителе компонентов катализатора, включающих соединение редкоземельных металлов, галогенорганическое соединение, алюминийорганическое соединение и сопряженный диен, отличающийся тем, что в качестве галогенорганического соединения используют четыреххлористый углерод, который предварительно подвергают взаимодействию с частью или всем количеством алюминийорганического соединения при мольном отношении четыреххлористый углерод : алюминий, равном 0,025-0,75 как при комнатной температуре, так и при повышенной, после чего при комнатной температуре проводят смешение с остальными компонентами при мольном соотношении редкоземельный металл : алюминий : хлор : диен, равном 1 : 4-20 : 2-3 : 0,1-20.

2. Способ получения катализатора сополимеризации сопряженных диенов по п. 1, отличающийся тем, что взаимодействие четыреххлористого углерода с алюминийорганическим соединением проводят при 50-70oС.

Описание изобретения к патенту

Изобретение относится к способам получения катализатора сополимеризации сопряженных диенов и может найти применение при производстве каучуков общего назначения в промышленности синтетических каучуков.

Известен способ получения катализатора сополимеризации сопряженных диенов путем взаимодействия хелатгалогенидов лантаноидов, предпочтительно лантана и церия, с триалкилалюминием или диалкилалюминийгидридом (Патент США 3297667 С1 260-82.1, МКИ2 C 08d, 1967). Исходный хелатгалогенид лантаноида получают взаимодействием безводных галогенидов металлов с хелатообразующим агентом, например салициловым альдегидом, аминофенолом, оксихинолином, щавелевой кислотой, путем 24-40-часового кипячения в этаноле. Твердый продукт выделяют из этанола и тщательно сушат. Затем при комнатной температуре добавляют алюминийорганическое соединение в углеводородном растворителе. При этом мольное соотношение лантаноид:галоген:алюминий находится в области 1: 1-2,5: 25-100. Катализатор выдерживают при комнатной температуре в течение 6-24 часов и затем подают в эквимолярную смесь бутадиена с изопреном в гептане. Температура реакционной смеси самопроизвольно поднимается в течение 1,5 часов до 72oС, а затем в течение 3 часов опускается до 37oС. Полимеризацию прерывают, и выход сополимера составляет 18,2 кг/г-атом церия. Содержание бутадиеновых и изопреновых звеньев в сополимере соответствует количеству каждого мономера в исходной смеси.

К числу недостатков способа относятся сложность синтеза хелатгалогенидов лантаноидов, использование в качестве хелатообразующего агента сравнительно дорогостоящих и малодоступных соединений, длительность процесса приготовления катализатора, довольно высокий расход алюминийорганического соединения. Кроме того, катализатор имеет низкую активность, а сополимер, получаемый с применением такого катализатора, обладает недостаточной стереорегулярностыо (содержание цис-1,4 звеньев не превышает 95%).

Известен способ получения катализатора сополимеризации диеновых углеводородов взаимодействием алкоголятов лантаноидов с триалкилалюминием или диалкилалюминийгидридом и галогенсодержащим соединением, в качестве которого выбраны галогениды алюминия, бора, титана, ванадия и молибдена (Патент ФРГ 2833721, С 08 F 36/00, 1978).

Катализаторы могут готовиться в присутствии диеновых углеводородов. Мольное соотношение лантаноид : алюминий : галоген : диен находится в области 1:1-120:0,1-10:5-50. Сополимеризацию эквимолярной смеси бутадиена и изопрена проводят в углеводородном растворителе при температуре 10-80oС. Выход сополимера составляет 413,5 кг/г-атом неодима. Хотя сополимеры имеют более регулярную микроструктуру, чем полученные по предыдущему способу, а именно содержание цис-1,4 звеньев в бутадиеновой части составляет 98%, а в изопреновой - 95%, однако недостаточно высокую. Кроме того, активность катализатора все еще довольно низка, а сополимеры, получаемые с его использованием, обладают недостаточно хорошей морозостойкостью. Так, по данным авторов настоящей заявки, температура плавления образца сополимера с характеристической вязкостью 4,0 дл/г составляет минус 4oС (ДТА).

Наиболее близким по технической сущности к предлагаемому способу является способ получения катализатора сополимеризации сопряженных диенов путем взаимодействия в углеводородном растворителе соединений индивидуальных лантаноидов или их смеси, преимущественно карбоксилата или алкоголята неодима, с галогенорганическим соединением, выбранным из числа первичных, вторичных или третичных алкил-, циклоалкил-, арил-, алкиларил-, винил-, алкокси-, эпоксигалогенидов, и триалкилалюминием или диалкилалюминийгидридом (Патент США 4444903, МКИ3 C 08 F 4/62, 1984). Соотношение лантаноид : алюминий : галоген находится в области 1:30-200:0,5-3. Компоненты катализатора смешивают при комнатной температуре в любом порядке в присутствии или в отсутствие небольшого количества мономера и выдерживают 15 минут. Катализатор стабилен во времени, обладает хорошей активностью. При оптимальном мольном соотношении компонентов неодим:алюминий:хлор, равном 1:50:2, и температуре полимеризации 60oС выход сополимера за 1 час составляет более 500 кг/г-атом неодима. Сополимер имеет довольно высокую характеристическую вязкость (более 6 дл/г) и содержит количество цис-1,4 звеньев в бутадиеновой и изопреновой частях, равное в сумме 98-99%.

Несмотря на то, что катализатор обладает хорошей активностью и позволяет получать сополимеры с высоким содержанием цис-1,4 звеньев, он не лишен ряда недостатков. Так, используемые для приготовления катализатора галогенорганические соединения малодоступны и относительно дороги, а высокое соотношение алюминия и неодима (от 30:1 до 200:1) приводит к повышению содержания золы в сополимере. Состав образующегося сополимера заметно отличается от состава исходной смеси мономеров, например, при введении в зону сополимеризации 17% мольных изопрена и 83% мольных бутадиена, в конечном продукте содержится только 9% мольных изопреновых звеньев. Остальное количество изопрена остается незаполимеризованным, что экономически невыгодно и затрудняет синтез сополимеров с заданным составом. Кроме того, сополимеры, синтезированные с применением катализатора, полученного описанным способом, обладают недостаточно хорошей морозостойкостью, о чем свидетельствует приведенная температура плавления сополимеров с характеристической вязкостью 6,02 дл/г, равная минус 9oС (ДТА).

Задачей предлагаемого технического решения является разработка способа получения катализатора, позволяющего значительно сократить расход алюминийорганического соединения, используя при этом более доступное сырье, а также дающего возможность получать сополимеры с улучшенной морозостойкостью.

Поставленная задача достигается тем, что в заявленном способе получения катализатора взаимодействием в углеводородном растворителе компонентов катализатора, включающих соединение редкоземельных металлов, галогенорганическое соединение, алюминийорганическое соединение и сопряженный диен, в качестве галогенорганического соединения используют четыреххлористый углерод (CCl4), который предварительно подвергают взаимодействию с частью или всем количеством алюминийорганического соединения при мольном отношении ССl4 : алюминий, равном 0,025-0,75 как при комнатной, так и при повышенной температуре, после чего при комнатной температуре проводят смешение с остальными компонентами при мольном соотношении редкоземельный металл : алюминий : хлор : диен, равном 1:4-20:2-3:0,1-20.

Взаимодействие четыреххлористого углерода с алюминийорганическим соединением предпочтительно проводить при температуре 50-70oС.

Сущность предлагаемого способа заключается в том, что в вакуумированный при 200oС и заполненный инертным газом стеклянный реактор помещают раствор алюминийорганического соединения в толуоле и добавляют четыреххлористый углерод (ГОСТ 20288-74) в количестве, как правило, соответствующем мольному отношению ССl4 : алюминий, равному 0,025-0,75, наиболее предпочтительно 0,025-0,50. Взаимодействие проводят как при комнатной температуре, так и при повышенной, но наиболее предпочтительно 50-70oС, что обеспечивает сочетание достигаемости эффекта и наиболее коротких сроков синтеза.

После охлаждения раствора до комнатной температуры его смешивают с соединением редкоземельного металла, сопряженным диеном и оставшейся частью алюминийорганического соединения в любой последовательности. Мольное соотношение редкоземельный металл : алюминий : хлор : диен составляет 1:4-20: 2-3:0,1-20.

В качестве соединения редкоземельного металла используют карбоксилаты или алкоголяты, образованные индивидуальными лантаноидами с атомным номером 57-71, например неодимом (ТУ 48-4-186-72), празеодимом (ТУ 48-4-191-72), гадолинием (ТУ 48-4-200-72), тербием (ТУ 48-4-190-72) или техническими смесями металлов, например так называемым "дидимом", содержащим не менее 85% неодима и празеодима от суммы всех металлов (ТУ АД 11.46-89), и кислотами, например нефтеновой, способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192- и способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192,способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192-разветвленными монокарбоновыми (ТУ 2431-200-00203312-2000).

В качестве алюминийорганических соединений используют триалкилалюминий, где алкил - н- или изо-С110алкил, например триэтилалюминий (ТУ 6-02-638-76), триизобутилалюминий (ТУ 38.1031.54-79), диизобутилалюминийгидрид (ТУ 6-02-986-75), тетраалкилалюмоксан или их смеси.

В качестве сопряженных диенов при приготовлении катализатора могут быть использованы бутадиен (ТУ 38.103658-88), изопрен (ТУ 38.103653-88), пиперилен (ТУ 38.103300-83).

Галогенорганическое соединение, используемое в качестве компонента катализатора, получают в ароматических углеводородах, предпочтительно толуоле, для остальных компонентов могут быть использованы алифатические, алициклические, ароматические углеводороды.

После смешения компонентов катализатора смесь выдерживают от 0,5 до 10 часов и используют для сополимеризации сопряженных диенов.

В качестве сопряженных диенов могут быть использованы, например, бутадиен, изопрен, пиперилен.

Сополимеризацию проводят в алифатических, алициклических, ароматических углеводородах или в смеси изоамиленов.

Содержание суммы мономеров в растворе 10-20 об.%.

Сополимеризацию проводят при температуре 0-80oС, предпочтительно 20-60oС.

Вязкость сополимера можно регулировать известным приемом - введением в раствор мономеров в углеводородном растворителе до подачи катализатора диизобутилалюминийгидрида.

По окончании сополимеризации катализатор дезактивируют, а сополимер выделяют введением этанола, содержащего в качестве стабилизатора 0,6 мас.% агидола-2 [2,2"-мeтилeн-биc(4-мeтил-6-тpeтбyтилфeнoла)] в расчете на сополимер. Сополимер сушат в вакууме до постоянного веса.

Активность катализатора оценивают в кг сополимера, полученного на 1 г-атом редкоземельного металла за 1 час.

Ниже приводятся примеры, иллюстрирующие предлагаемое изобретение.

Пример 1

В стеклянный реактор с магнитной мешалкой, предварительно прогретый в вакууме и заполненный сухим аргоном, помещают 0,66 мл триизобутилалюминия в толуоле с концентрацией 0,4 моль/л и при перемешивании вводят микрошприцом 0,019 мл (0,2 ммоль) CCl4. Раствор нагревают до 70oС. Мольное отношение CCI4 : алюминий составляет 0,75. Реакционную смесь выдерживают 2 часа, затем охлаждают до комнатной температуры и при перемешивании подают 3,34 мл раствора триизобутилалюминия в толуоле с концентрацией 0,4 моль/л, 1 мл 2-этилгексаноата празеодима с концентрацией в толуоле 0,4 моль/л и 0,35 мл (4 ммоль) бутадиена. Мольное соотношение празеодим : алюминий : хлор : бутадиен равно 1:10:2:10.

Через 2 часа смесь используют в качестве катализатора для сополимеризации бутадиена с изопреном. Мольное соотношение бутадиена и изопрена равно 75:25. В предварительно прогретую и заполненную сухим аргоном стеклянную ампулу емкостью 80 мл загружают 50 мл раствора бутадиена и изопрена в циклогексане, содержащего 3,50 г бутадиена и 1,47 г изопрена, ампулу термостатируют при 40oС и прибавляют шприцом 0,12 мл катализатора. Мольное соотношение суммы мономеров к празеодиму при этом составляет 20000:1.

Через 1 час сополимер выделяют. Выход сополимера равен 886,5 кг/г-атом празеодима. Состав сополимера: 74,8 мол.% бутадиеновых и 25,2 мол.% изопреновых звеньев. Содержание цис-1,4 звеньев 99,0%, характеристическая вязкость 4,6 дл/г. Температура плавления ТПЛ (ДТА) равна минус 21oС. Коэффициент морозостойкости при -60oС вулканизата сополимера достигает значения 0,79.

Пример 2

В стеклянный реактор с магнитной мешалкой, предварительно вакуумированный, прогретый и заполненный сухим аргоном, помещают 20 мл триэтилалюминия в толуоле с концентрацией 0,4 моль/л и при перемешивании вводят микрошприцом 0,019 мл (0,2 ммоль) ССl4. Мольное отношение ССl4 : алюминий составляет 0,025. Температуру в реакторе повышают до 60oС. Реакционную смесь выдерживают 0,5 часа. Затем раствор охлаждают до комнатной температуры и при перемешивании подают 1 мл нафтената неодима с концентрацией в толуоле 0,4 моль/л и 0,004 мл пиперилена. Мольное соотношение неодим : алюминий : хлор : пиперилен составляет 1:20:2:0.1.

Смесь выдерживают 0,5 часа и используют в качестве катализатора для сополимеризации бутадиена с изопреном. Мольное соотношение бутадиена и изопрена в исходной смеси равно 90:10. В предварительно прогретую и заполненную сухим аргоном стеклянную ампулу загружают 50 мл раствора бутадиена и изопрена в бензине, содержащего 4,19 г бутадиена и 0,59 г изопрена, ампулу термостатируют при 60oС и прибавляют шприцом 0,227 мл катализатора. Мольное соотношение суммы мономеров к неодиму равно 20000:1.

Через 1 час сополимер выделяют. Выход сополимера составляет 930 кг/г-атом неодима. Сополимер состоит из 89,8 мол.% бутадиеновых и 10,2 мол.% изопреновых звеньев, содержит 99,2% цис-1,4 звеньев и имеет характеристическую вязкость 4,8 дл/г. Температура плавления ТПЛ (ДТА) равна минус 15oС. Коэффициент морозостойкости при -60oС вулканизата сополимера равен 0,69.

Пример 3

В стеклянный реактор с мешалкой, прогретый в вакууме и заполненный сухим аргоном, помещают 4 мл триизобутилалюминия в толуоле с концентрацией 0,4 моль/л и при перемешивании вводят микрошприцом 0,024 мл (0,25 ммоль) ССl4. Раствор нагревают до 50oС. Мольное отношение ССl4 : алюминий составляет 0,156. Через 3 часа раствор охлаждают до комнатной температуры и при перемешивании подают в ампулу, предварительно прогретую, заполненную аргоном и содержащую 0,8 мл изопрена и 1 мл способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192,способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192-диметилоктаноата дидима с концентрацией в бензине 0,4 моль/л. Мольное соотношение дидим : алюминий : хлор : изопрен составляет 1:4:2,5:20. Через 3 часа смесь используют в качестве катализатора для сополимеризации бутадиена с пипериленом. Мольное соотношение бутадиена и пиперилена равно 90: 10. В предварительно прогретую и заполненную аргоном ампулу загружают 50 мл раствора бутадиена и пиперилена в смеси изоамиленов, содержащего 4,19 г бутадиена и 0,59 г пиперилена, ампулу термостатируют при 20oС и прибавляют 0,062 мл катализатора. Мольное соотношение суммы мономеров к дидиму составляет 20000:1.

Через 1 час сополимер выделяют. Выход сополимера составляет 894 кг/г-атом дидима.

Состав сополимера: 90,3% бутадиеновых и 9,7% пипериленовых звеньев. Содержание цис-1,4 звеньев 98,2%, характеристическая вязкость 4,8 дл/г. Температура плавления ПЛ (ДТА) равна -33oС. Коэффициент морозостойкости при -60oС вулканизата сополимера равен 0,75.

Пример 4

В стеклянный реактор с мешалкой, прогретый в вакууме и заполненный сухим аргоном, помещают 7 мл триэтилалюминия в толуоле с концентрацией 0,4 моль/л и при перемешивании вводят микрошприцом 0,020 мл (0,210 ммоль) CCl4. Температуру в реакторе поддерживают 28oС. Мольное отношение CСl4 : алюминий равно 0,075. Через 6 часов раствор подают в предварительно прогретую и заполненную аргоном ампулу, содержащую 10 мл раствора тетраизобутилалюмоксана в толуоле с концентрацией 0,4 моль/л, 1 мл раствора в толуоле способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192-этил, способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192способ получения катализатора сополимеризации сопряженных   диенов, патент № 2205192-бутилгексаноата тербия с концентрацией 0,4 моль/л и 0,6 мл пиперилена. Мольное соотношение тербий : алюминий : хлор : пиперилен равно 1:17:2,1:15.

Смесь выдерживают 10 часов и используют в качестве катализатора для сополимеризации бутадиена с пипериленом при их мольном соотношении 70:30. С этой целью в предварительно прогретую в вакууме и заполненную аргоном ампулу загружают 50 мл раствора смеси мономеров в толуоле, содержащего 3,26 г бутадиена, 1,76 г пиперилена, 1 мл раствора диизобутилалюминийгидрида в толуоле с концентрацией 0,1 моль/л, ампулу термостатируют при 60oС и прибавляют 0,31 мл катализатора. Мольное соотношение суммы мономеров к тербию равно 15000:1.

Через 1 час сополимер выделяют. Выход сополимера составляет 525 кг/г-атом тербия. Состав сополимера: 70,8% бутадиеновых и 29,2% пипериленовых звеньев. Содержание цис-1,4 звеньев 99,0%. Характеристическая вязкость 4,5 дл/г. Температура плавления сополимера равна минус 36oС. Коэффициент морозостойкости при -60oС вулканизата сополимера равен 0,70.

Таким образом, предлагаемый способ позволяет значительно сократить расход алюминийорганического соединения, используя при этом доступное сырье. Кроме того, применение предлагаемого способа позволяет получать сополимеры с высоким выходом, при этом соотношение мономерных звеньев в сополимере соответствует их содержанию в исходной смеси мономеров. Применение предлагаемого способа позволяет существенно улучшить низкотемпературные свойства полимеров - снизить температуру плавления каучуков, повысить коэффициент морозостойкости резин на их основе, так необходимых для изготовления морозостойких изделий в производстве РТИ, шин, искусственных кож, кабелей.

Класс C08F136/04 сопряженные

способ получения полидиенов полимеризацией в объеме -  патент 2515980 (20.05.2014)
способ получения полидиенов -  патент 2499803 (27.11.2013)
способ получения разветвленных функционализированных диеновых (со)полимеров -  патент 2497837 (10.11.2013)
способ синтеза функционализированных поли(1,3-алкадиенов) и их применение в получении ударопрочных винилароматических полимеров -  патент 2493174 (20.09.2013)
способ получения цис-1,4-(со)полимеров сопряженных диенов и (со)полимер, полученный этим способом -  патент 2467019 (20.11.2012)
способ получения полидиенов с повышенным содержанием винильных звеньев -  патент 2443718 (27.02.2012)
способ получения каталитической системы для полимеризации бутадиена и способ получения цис-1,4-полибутадиена -  патент 2442653 (20.02.2012)
способ получения синтетических каучуков -  патент 2372357 (10.11.2009)
синтетические полиизопрены и способ их получения -  патент 2304151 (10.08.2007)
способ получения катализатора полимеризации и сополимеризации сопряженных диеновых углеродов -  патент 2268894 (27.01.2006)

Класс C08F4/52 бор, алюминий, галлий, индий, таллий или редкоземельные элементы

способ полимеризации в массе -  патент 2505553 (27.01.2014)
способ получения цис-1,4-полидиенов -  патент 2500689 (10.12.2013)
способ получения полидиенов -  патент 2499803 (27.11.2013)
арилфосфаты неодима и катализатор полимеризации сопряженных диенов с их использованием -  патент 2456292 (20.07.2012)
способ получения каталитической системы для полимеризации бутадиена и способ получения цис-1,4-полибутадиена -  патент 2442653 (20.02.2012)
боргидридный металлоценовый комплекс лантаноида, включающая его каталитическая система, способ полимеризации, в которой она применяется, и сополимер этилена с бутадиеном, полученный этим способом -  патент 2441015 (27.01.2012)
способ получения раствора органофосфата редкоземельного элемента в органическом растворителе -  патент 2441013 (27.01.2012)
металлоценовый комплекс боргидрида лантаноида, каталитическая система, содержащая этот комплекс, способ полимеризации с его использованием и сополимер этилена с бутадиеном, полученный этим способом -  патент 2437891 (27.12.2011)
способ получения катализатора (со)полимеризации бутадиена -  патент 2432365 (27.10.2011)
способ получения катализатора (со)полимеризации бутадиена -  патент 2426748 (20.08.2011)

Класс C08F2/04 полимеризация в растворе

способ получения эластичных сополимеров этилена и альфа-олефинов -  патент 2512536 (10.04.2014)
способ и устройство для непрерывного получения полимеризатов методом радикальной полимеризации -  патент 2507214 (20.02.2014)
регулируемая в отношении полидисперсности полимеризация изоолефина с полиморфогенатами -  патент 2491299 (27.08.2013)
способ высокотемпературной полимеризации полиэтилена в растворе -  патент 2463311 (10.10.2012)
полимерные наночастицы, имеющие конфигурацию "ядро-оболочка" и включающие межфазную область -  патент 2458084 (10.08.2012)
способ получения сополимеров акрилатов -  патент 2450024 (10.05.2012)
способ получения перфторированного сополимера с сульфогруппами -  патент 2412208 (20.02.2011)
способ радикальной полимеризации этиленовых ненасыщенных соединений -  патент 2401280 (10.10.2010)
способ управляемой радикальной полимеризации акриловой кислоты и ее солей, полученные полимеры с низкой полидисперсностью и их применение -  патент 2299890 (27.05.2007)
ударопрочный полистирол, модифицированный линейным и разветвленным диеновыми каучуками -  патент 2291875 (20.01.2007)

Класс C08F4/635 алюминием или его соединениями

Наверх