способ изготовления изделия из титанового сплава и способ термической обработки изделия из титанового сплава
Классы МПК: | C22F1/18 тугоплавких или жаростойких металлов или их сплавов |
Автор(ы): | Коломенский А.Б. |
Патентообладатель(и): | Коломенский Александр Борисович |
Приоритеты: |
подача заявки:
2001-09-12 публикация патента:
10.06.2003 |
Изобретение относится к машиностроению и может быть использовано при изготовлении листовых конструкций из титановых сплавов с применением формообразования, например холодной штамповки, и последующей термической обработки для частичного снятия нагартовки и улучшения механических характеристик изделия. Задача изобретения - снижение уровня энергозатрат и себестоимости производства при одновременном повышении циклической прочности изделия за счет исключения либо уменьшения числа промежуточных отжигов заготовки в процессе деформирования, что обеспечивается применением регламентированных степеней деформации, а также за счет выбора оптимального температурного режима отжига изделия в процессе термообработки. Для этого деформирование изделия осуществляют со степенью деформации , удовлетворяющей условию K1(18,5-1,810-52в), где К1=0,4...1 - коэффициент; в - временное сопротивление, МПа. Изделия для частичного снятия нагартовки и улучшения механических характеристик подвергают отжигу, нагревая до температуры нагрева (Тн), выбираемой по формуле Tн = K2(в-190)+360, где К2=0,2...0,3oС/МПа - коэффициент; в - временное сопротивление, МПа. Техническим результатом изобретения является уменьшение трудоемкости и длительности цикла изготовления изделия, а также повышение срока эксплуатации изделий из дорогостоящих титановых сплавов. 2 с.п.ф-лы, 1 табл.
Рисунок 1
Формула изобретения
1. Способ изготовления изделия из титанового сплава, включающий формообразование заготовки холодным пластическим деформированием и термическую обработку, отличающийся тем, что деформирование заготовки проводят со степенью деформацииK1(18,5-1,810-52в),
где К1=0,4...1 - коэффициент;
в - временное сопротивление, МПа,
а термическую обработку осуществляют с использованием низкотемпературного отжига. 2. Способ термической обработки изделия из титанового сплава, включающий низкотемпературный отжиг, отличающийся тем, что низкотемпературный отжиг проводят при температуре нагрева
Tн = K2(в-190)+360,
где К2=0,2...0,3oС/МПа - коэффициент;
в - временное сопротивление, МПа.
Описание изобретения к патенту
Изобретение относится к машиностроению и может быть использовано при изготовлении листовых конструкций из титановых сплавов с применением формообразования, например холодной штамповки, и последующей термической обработки. Известен способ изготовления штампосварных изделий из титановых сплавов, преимущественно из листовых заготовок, включающий операции штамповки, сварки и нагрева, при котором заготовку перед штамповкой нагревают до 900-1000oС в течение 10-60 мин, и изделие после сварки нагревают до 1000-1050oС, выдерживают в нагретом состоянии 10-60 мин и охлаждают со скоростью 10oС в мин до 900-600oС (описание к а.с. СССР 333998, В 21 D 35/00). Известный способ требует значительных энергозатрат на проведение термической обработки. При этом выбор температурных режимов не регламентирован в зависимости от обрабатываемого материала. Это приводит к перерасходу электроэнергии, усложнению технологического процесса и в ряде случаев - к пониженным механическим свойствам. Известен способ изготовления изделия из титановых сплавов обработкой давлением листовой заготовки, при котором деформируют заготовку в холодном состоянии, а в процессе штамповки ее подвергают промежуточному отжигу (прототип, см. Технология производства титановых самолетных конструкций. /А. Г. Братухин, Б.А.Колачев, В.В.Садков и др. М.: Машиностроение, 1995. С.181-183). В известном способе промежуточные отжиги необходимы для повышения характеристик пластичности заготовки, которые снижаются вследствие нагартовки в процессе холодной пластической деформации. Однако промежуточные отжиги усложняют технологический процесс формообразования и повышают трудоемкость, энергозатраты, увеличивают длительность цикла изготовления. Известен способ термической обработки нагартованных листовых деталей из титана и титановых сплавов, включающий нагрев, выдержку при температуре Тотж, выбираемой по формулеTотж = Tн.р-K(в+20),
где Тн.р. - температура начала рекристаллизации сплава, oС;
в - временное сопротивление разрыву сплава, МПа;
к=0,4-0,5oС/МПа (описание к патенту РФ 2100473, С 22 F 1/18). Известный способ позволяет улучшить механические характеристики нагартованного металла. Однако для сплавов средней и особенно повышенной прочности температура отжига по известному способу недостаточна для повышения пластических свойств металла после холодного деформирования и это не позволяет в полной мере восстановить работоспособность изделия в условиях циклического нагружения. Поэтому способ является недостаточно эффективным применительно к холоднодеформируемым листовым конструкциям из титановых сплавов. Известен способ термической обработки изделий из титановых сплавов, включающий низкотемпературный отжиг при 450-510oС в течение 5-10 ч, охлаждение и полировку изделий (описание к а.с. СССР 411154, C 22 F 1/18, прототип). Известный способ позволяет повысить предел выносливости изделий. Однако выбор температуры не регламентирован в зависимости от конкретного сплава и уровня его прочности, что может приводить к заниженным усталостным характеристикам. Кроме того, значительная длительность нагрева приводит к существенным затратам электроэнергии и удорожает производство изделий. Технический результат от использования изобретения - снижение уровня энергозатрат и себестоимости производства при одновременном повышении циклической прочности изделия за счет исключения либо уменьшения числа промежуточных отжигов заготовки в процессе деформирования, что обеспечивается регламентированием степени деформации, а также за счет выбора оптимального температурного режима отжига изделия в процессе термообработки. Технический результат достигается тем, что в способе изготовления изделия из титановых сплавов, включающем формообразование листовой заготовки холодным пластическим деформированием и нагрев, деформирование заготовки осуществляют со степенью деформации , удовлетворяющей условию:
K1(18,5-1,810-52в),
где K1=0,4...1 - коэффициент,
в - временное сопротивление разрыву сплава, МПа,
а изделие после формообразования подвергают термической обработке, включающей низкотемпературный отжиг. В способе термической обработки изделия из титановых сплавов, включающем низкотемпературный отжиг, изделия подвергают отжигу, нагревая до температуры Тн, выбираемой по формуле
Tн = K2(в-190)+360,
где K2=0,2...0,3oС/МПа - коэффициент;
в - временное сопротивление разрыву сплава, МПа. Предельная степень деформации, рассчитываемая по формуле = K1(18,5-1,810-52в), где K1=0,4...1, позволяет с учетом уровня прочности металла обеспечить ему в сочетании с последующей термообработкой максимальные показатели циклической прочности. Предлагаемая эмпирическая формула выведена экспериментально и позволяет определять предельные степени деформации , при которых достигается критическая плотность дислокаций и возрастает вероятность трещинообразования для конкретного сплава с учетом его прочностных свойств. Коэффициент K1 учитывает схему деформации заготовки в процессе формообразования (вытяжка, гнутье) и особенности заготовки - наличие либо отсутствие сварных швов в зоне деформации (т.е. тип микроструктуры металла, а также наличие геометрических концентраторов, свойственных сварному шву, - подрезы, усиления и пр.). Низкотемпературный отжиг проводится для частичного снятия нагартовки и улучшения механических характеристик изделия. Температура нагрева рассчитывается по формуле Tн = K2(в-190)+360, полученной экспериментально из условия оптимизации циклической долговечности изделий с учетом прочностных характеристик металла. Низкотемпературный отжиг обеспечивает некоторое снижение плотности дислокаций, упорядочивание структуры вследствие начала процесса полигонизации и дисперсионное упрочнение при распаде метастабильных фаз, зафиксированных в процессе предшествующих операций (например, аргонодуговой сварки). Как следствие, достигается повышение циклической прочности металла. Величина коэффициента К2 выбирается в зависимости от различных технологических факторов (наличия в изделии сварных швов, наличия либо отсутствия предшествующей операции формообразования и схемы деформирования) и с учетом характера эксплуатационных нагрузок (статические и повторно-статические либо усталостные. Известных решений, содержащих отличительные признаки, не обнаружено. Пример конкретного выполнения
Изготавливали методом вытяжки деталь типа чаши из листового технического титана ВТ1-0 толщиной 1,2 мм диаметром 180 мм и глубиной 18 мм (максимальная степень растяжения 20%). Временное сопротивление разрыву титана ВТ1-0 в = 450 МПa.
Перед вытяжкой заготовку подвергают полному отжигу в вакуумной печи типа УВН-1500 по режиму 550oС, 2 ч. По предлагаемому способу предельное значение степени деформации при выбранном коэффициенте K1=1 составляет =14,86%. Таким образом, процесс вытяжки по предлагаемому способу осуществляют в два перехода со степенями деформации в 10% с 1 промежуточным полным вакуумным отжигом по режиму 550oС, 2 ч. По прототипу степень растяжения за один переход ограничивается для титана ВТ1-0 значением в 7% (см., например, книгу: Технология производства титановых самолетных конструкций. /А.Г.Братухин, Б.А.Колачев, В.В.Садков и др. М. : Машиностроение, 1995. С.182). После этого требуется проведение промежуточного полного вакуумного отжига при температуре 550oС в течение 2 ч, т. е. деформация в 20% по способу, взятому за прототип, обеспечивается в три перехода с двумя промежуточными вакуумными отжигами по режиму 550oС, 2 ч. Затраты электроэнергии на проведение 1 садки в вакуумной печи типа УВН-1500 по режиму 550oС, 2 ч составляют 3680 кВт.ч. После операций формообразования изделие подвергают окончательному низкотемпературному воздушному отжигу в печи типа ЭТА-4 по режиму 465oС, 1 ч (см. , например, режимы неполного отжига в книге: Технология производства титановых самолетных конструкций. /А.Г.Братухин, Б.А.Колачев, В.В.Садков и др. М.: Машиностроение, 1995. С.79). Затраты электроэнергии на проведение 1 садки в печи типа ЭТА-4 по режиму 465oС, 1 ч составляют 1850 кВт.ч. По предлагаемому способу термической обработки температура нагрева равна Тн=K2(450-190)+360, где K2 в данном случае равен 0,2. Тн=0,2260+360=412oС. Время выдержки (с учетом времени восстановления печи) - 1ч. Затраты электроэнергии на проведение 1 садки в печи типа ЭТА-4 по режиму 412oС, 1 ч составляют 1680 кВт.ч. По прототипу был выбран режим 450oС, 8 ч. Затраты электроэнергии на проведение 1 садки в печи типа ЭТА-4 по режиму 450oС, 8 ч составляют 3890 кВт.ч. Готовые изделия подвергали сравнительным циклическим испытаниям пульсирующим внутренним давлением при частоте f=0,2 Гц, коэффициенте асимметрии цикла R=+0,1. Максимальное напряжение цикла max составляло 350 МПа. Сравнительные данные по предлагаемому способу и прототипу сведены в таблицу. Экономический эффект заключается в экономии, уменьшении трудоемкости и длительности цикла изготовления изделий, а также повышении срока эксплуатации изделий из дорогостоящих титановых сплавов.
Класс C22F1/18 тугоплавких или жаростойких металлов или их сплавов