способ измерения энергии оптического и свч-излучения
Классы МПК: | G01J5/58 с использованием поглощения, поляризации, а также затухания света |
Автор(ы): | Корольков В.А. |
Патентообладатель(и): | Институт оптического мониторинга СО РАН, ООО "Сибаналитприбор" |
Приоритеты: |
подача заявки:
2001-03-14 публикация патента:
10.07.2003 |
Изобретение относится к измерительной технике. Способ включает введение излучения в герметическую ячейку, заполненную поглощающим излучение газом. Через поглощающий излучение газ пропускают акустические сигналы, измеряют вызванное поглощением излучения изменение скорости прохождения этих акустических сигналов через поглощающий газ и по величине изменения скорости акустических сигналов определяют энергию оптического и СВЧ-излучения. Технический результат - увеличение чувствительности измерений.
Формула изобретения
Способ измерения энергии оптического и СВЧ-излучения, включающий введение излучения в герметическую ячейку, заполненную поглощающим излучение газом, отличающийся тем, что через поглощающий излучение газ пропускают акустические сигналы, измеряют вызванное поглощением излучения изменение скорости прохождения этих акустических сигналов через поглощающий излучение газ и по величине изменения скорости акустических сигналов определяют энергию оптического и СВЧ-излучения.Описание изобретения к патенту
Изобретение относится к измерительной технике и может быть использовано для измерения энергетических параметров оптического излучения (преимущественно инфракрасного диапазона) и СВЧ-излучения. Известен способ измерения энергии оптического излучения, заключающийся в направлении оптического излучения через прозрачное окно в герметичную камеру, заполненную газом и имеющую установленную на пути оптического луча тонкую поглощающую пленку, а также мембрану, являющуюся частью одной из стенок камеры (Пневматический приемник, ячейка Голея). При поглощении пленкой падающего на нее оптического излучения происходит нагрев пленки и вследствие теплопередачи нагрев газа в камере, что приводит к повышению его давления и соответствующей деформации мембраны. По величине деформации судят о величине поглощенного оптического излучения [1]. Недостатками этого способа являются спектральная неселективность приема, сравнительно большая инерционность и низкая пороговая чувствительность, обусловленная малыми величинами деформации мембраны при поглощении пленкой малых потоков оптического излучения. Известен оптико-акустический способ измерения энергии оптического излучения, заключающийся в направлении оптического излучения через прозрачное окно в герметичную камеру, заполненную газом, селективно поглощающим оптическое излучение определенной длины волны, и имеющую в качестве чувствительного элемента акустический микрофон [2] (прототип). По сравнению с приведенным выше способом, данный способ обладает спектральной селективностью, меньшей инерционностью и более высокой чувствительностью. Основным недостатком этого способа является крайне низкая защищенность от влияния акустических и вибрационных помех, обусловленная использованием в качестве чувствительного элемента акустического микрофона. Это обстоятельство приводит к тому, что несмотря на то, что этот способ приема оптического излучения по своей чувствительности в средней ИК-области спектра приближается к фотоприемникам других типов, а в дальней ИК-области существенно превосходит их, использование его при решении целого ряда практических задач существенно ограничено. Высокая степень восприимчивости данного способа измерения оптического излучения к акустическим и вибрационным шумам существенно ухудшает пороговую чувствительность способа измерений по сравнению с принципиально достижимыми значениями и делает его малопригодным для использования в широкой практике в реальных производственных условиях. Техническим результатом, который может быть получен при реализации изобретения, является увеличение чувствительности и помехозащищенности процесса измерения энергии оптического излучения (особенно, инфракрасного диапазона) и СВЧ-излучения. Технический результат достигается тем, что, как и в прототипе, оптическое СВЧ-излучение направляют через прозрачное окно в герметичную ячейку, заполненную поглощающим излучение газом. Но, в отличие от прототипа, через находящийся в ячейке поглощающий газ пропускают акустические сигналы, измеряют вызванное поглощением излучения изменение скорости прохождения акустических сигналов через поглощающий газ и по величине этого изменения определяют энергию оптического СВЧ-излучения. Предлагаемый способ измерения энергии оптического СВЧ-излучения основан на том, что поглощение газом электромагнитного излучения приводит к увеличению температуры поглощающего газа, причем это увеличение однозначно связано с энергией поглощаемого излучения, оптическими и физико-химическими параметрами поглощающего газа (сечением поглощения молекулами газа излучения данного спектрального состава и теплоемкостью газа).

где


К - коэффициент пропорциональности, являющийся константой для данного сорта газа, геометрических размеров измерительной ячейки и давления газа в ячейке. Коэффициент пропорциональности К может быть рассчитан известным путем исходя из известной теплоемкости используемого газа и известного количества, заключенного в ячейке газа или определен эмпирически путем калибровочных измерений. Скорость звука в газовой среде С связана с температурой газовой среды Тк известным соотношением:
C = 20,067



а величины C1 и С2 определяют из соотношений
C1=L/t1
C2=L/t2, (4)
где L - геометрическая длина пути акустического сигнала, пропускаемого через измерительную ячейку;
t1, t2 - время прохождения этим сигналом длины L до (t1) и после (t2) поглощения газовой средой контролируемого электромагнитного излучения. Величина L является константой, определяемой конструкцией измерительной ячейки (геометрическим расстоянием между излучателем и приемником акустических сигналов), значения t1 и t2 измеряют посредством известных схем измерения временных интервалов. Таким образом, величина энергии оптического СВЧ-излучения, поступаемого в измерительную ячейку и поглощаемого находящимся в ней газом, однозначно связана с изменением времени прохождения акустическим сигналом, распространяющимся внутри ячейки, фиксированного расстояния L между излучателем и приемником акустических сигналов:

Так как процесс измерения энергии оптического СВЧ-излучения сводится к измерению флуктуаций температуры поглощающего излучение газа акустическим (ультразвуковым) методом, то данный способ может быть реализован посредством известных ультразвуковых измерителей флуктуации температуры газовой среды, имеющих в своем составе генератор возбуждающих импульсов, генератор тактовых импульсов, изучающий и приемный пьезоэлектрические преобразователи, приемный усилитель-ограничитель электрических сигналов, схему сравнения фаз излученного и принятого акустических сигналов (или схему измерения времени распространения акустических сигналов) и ряд дополнительных электронных устройств, предназначенных для учета некоторых источников ошибок измерений и служащих для увеличения точности измерения флуктуации температуры газовой среды (см., например, [3], [4], [5]). Источники информации
1. Ж. Аш и др. Датчики измерительных систем. Книга 1. Глава 5, стр. 219. Москва, "Мир", 1992. 2. Итанин Г. Г. и др. Источники и приемники излучения. Санкт-Петербург "Политехника", 1991. Глава 7, стр. 218. 3. А. И. Лукашевичюс и др. Устройство для измерения температуры. А.С. СССР 769364, бюл. 37, 07.10.80. 4. С. И. Антанайтис и др. Ультразвуковой измеритель температуры газовых сред. А.С. СССР 711383, бюл. 3, 25.01.80. 5. В. А. Сукацкас. Устройство для измерения температуры. А.С. СССР 647554, бюл. 6, 15.02.79.
Класс G01J5/58 с использованием поглощения, поляризации, а также затухания света
приемник излучения - патент 2391637 (10.06.2010) | ![]() |
приемник лазерного излучения - патент 2382993 (27.02.2010) | ![]() |
способ измерения мощности лазерного излучения - патент 2345334 (27.01.2009) | ![]() |
приемник лазерного излучения - патент 2295117 (10.03.2007) | ![]() |
пирометр - патент 2270984 (27.02.2006) | ![]() |
пирометр - патент 2225600 (10.03.2004) | |
способ измерения энергетических характеристик мощного оптического излучения - патент 2189568 (20.09.2002) | |
способ бесконтактного измерения температуры - патент 2149366 (20.05.2000) | |
способ измерения температуры - патент 2086935 (10.08.1997) | |
измеритель энергии импульсов электромагнитного излучения - патент 2031378 (20.03.1995) |