способ выделения углерода-14 из облученного нейтронами графита

Классы МПК:G21F9/32 прокаливание 
Автор(ы):, ,
Патентообладатель(и):Государственное унитарное предприятие Научно- производственное объединение "Радиевый институт им. В.Г.Хлопина"
Приоритеты:
подача заявки:
2001-07-23
публикация патента:

Изобретение относится к области удаления радиоактивных отходов в процессах регенерации отработавшего ядерного топлива. Сущность изобретения: облученный нейтронами графит нагревают в токе воздуха в интервале температур 450-530oС с последующим улавливанием и осаждением выделившихся соединений углерода-14. Технический результат: увеличение скорости процесса выделения углерода-14 из облученного нейтронами графита. 1 табл.
Рисунок 1

Формула изобретения

Способ выделения углерода-14 из облученного нейтронами графита, включающий термическую обработку графита с последующим улавливанием соединений углерода-14, отличающийся тем, что облученный нейтронами графит нагревают в токе воздуха в интервале температур 450-530oС.

Описание изобретения к патенту

Изобретение относится к области удаления радиоактивных отходов в процессах переработки отработавшего ядерного топлива.

Углерод-14 по сравнению с другими радиоактивными изотопами, выделяющимися на ядерных реакторах и заводах по воспроизводству ядерного топлива, имеет наибольшее радиоэкологическое значение из-за большого периода полураспада и значительного вклада в ожидаемую коллективную дозу [1]. При работе ядерных реакторов с графитовым замедлителем образуется большое количество углерода-14 не только в ядерном топливе, но и в графите. Так, только за счет примесей азота в графите образуется 120 Ku/ГВт (эл.) в год углерода-14 [2].

Наибольшее количество углерода-14 выделяется в атмосферу на заводах по воспроизводству ядерного топлива, особенно при переработке топлива реакторов HTGR, где отходящие газы содержат очень большое количество 12СО2 и следовые количества 14СО2. Для фиксации диоксида углерода обычно используют методы превращения его в карбонаты кальция и бария, которые можно перемешивать с цементом и окончательно захоранивать в соляных пещерах [3]. Недостатком указанных методов является образование больших количеств отходов, содержащих лишь незначительное по массе количество углерода-14.

Наиболее близким к заявляемому способу по технической сущности является способ удаления углерода-14 из облученного нейтронами графита реактора большой мощности канального (РБМК), осуществляющийся нагреванием в низком вакууме (Р~ 0,01 МПа) в интервале температур 800-1200oС с последующим улавливанием и осаждением выделившихся соединений углерода-14 [4]. Недостатком этого метода является длительность процесса. Так, для извлечения более 94% углерода-14 процесс проводят в течение 25 часов.

Предлагаемым изобретением решается задача увеличения скорости процесса выделения углерода-14 из облученного нейтронами графита. Для достижения указанного технического результата в предлагаемом способе, предусматривающем термическую обработку облученного нейтронами графита, нагревание осуществляют в токе воздуха при температурах 450-530oС с последующим улавливанием и осаждением выделившихся соединений углерода-14. Использование предлагаемого способа позволяет существенно увеличить скорость выделения углерода-14 из облученного нейтронами графита РБМК при гораздо менее высоких температурах.

Пример: Образец облученного нейтронами графита РБМК массой 0,1405 г помещался в кварцевую лодочку, которая ставилась в кварцевую трубку, и выдерживался в течение 5 часов в трубчатой печи при температуре 500oС в токе воздуха, продуваемого с объемной скоростью 1 л/ч.

Воздушный поток вместе с выделяющимися в процессе нагревания образца графита газами пропускался через нагретую до 450oС гранулированную окись меди для окисления окиси углерода и углеводородов. Далее воздушный поток проходил через ловушку и аэрозольный фильтр для улавливания графитовой пыли и систему, состоящую из трех последовательно соединенных барботеров, заполненных водным раствором NaOH с концентрацией 2 моль/л для улавливания диоксида углерода.

Для очистки от посторонних радиоактивных изотопов полученные щелочные растворы Na2CO3 разлагали с помощью НСl. Выделившийся диоксид углерода осаждали в виде СаСО3 и определяли содержание углерода-14 методом толстослойных дисперсных сцинтилляторов. Этот метод имеет незначительную систематическую погрешность, относительное квадратичное отклонение составляет 0,07. Диапазон определяемых активностей имеет интервал 2способ выделения углерода-14 из облученного нейтронами   графита, патент № 2212074101 - 2способ выделения углерода-14 из облученного нейтронами   графита, патент № 2212074105 Бк/проба. При каждом анализе выполнялось не менее двух параллельных определений. Активность углерода-14, поглощенного в ловушке с раствором щелочи, вычислялась по формуле:

способ выделения углерода-14 из облученного нейтронами   графита, патент № 2212074

где Апр - активность углерода-14, поглощенного в ловушке с раствором щелочи, Бк;

Nпр - скорость счета препарата, с-1;

Nф - скорость счета натурального фона, с-1;

Nэт - скорость счета эталона, с-1;

Аэт - активность углерода-14 в эталоне, Бк;

V1 - объем раствора щелочи в ловушке, см3;

V2 - объем аликвоты, см3;

Р1 - вес введенного носителя, г;

Р2 - вес выделенного препарата, г.

После окончания эксперимента масса образца, облученного нейтронами графита РБМК, составляла 0,0706 г (50,3% от первоначальной массы), а содержание углерода-14 - 4,9% от его первоначального количества.

Оставшийся после проведения эксперимента образец графита окислялся в кварцевой трубке потоком воздуха с объемной скоростью 10 л/ч при температуре 900oС в течение 30 минут, а отходящие газы пропускались через описанную выше систему. К концу эксперимента образец графита полностью окислился практически без твердого остатка.

В таблице приведена зависимость выделения углерода-14 из облученного нейтронами графита РБМК от времени и температуры в токе воздуха.

Результаты по выделению углерода-14 при температуре 450oС приведены для скорости пропускания воздуха 10 л/ч, а результаты, полученные при температурах 475, 500 и 530oС, - для скорости пропускания 1 л/ч.

По результатам таблицы видно, что скорость выделения углерода-14 из облученного нейтронами графита РБМК существенно выше, чем в прототипе. Так, по известному способу при температуре 900oС из образца выделяется 94,6% углерода-14 в течение 25 часов, тогда как по предлагаемому способу при температуре 500oС из образца выделяется 95,1% углерода-14 в течение 5 часов. Так же, как и в рассматриваемом прототипе, нагревание образца прекращали при уменьшении его массы на 50%.

Уменьшение температуры проведения процесса ниже 450oС приводит к значительному уменьшению скорости выделения углерода-14. Так, при температуре 400oС из образца выделяется 80% углерода-14 за 50 часов. Увеличение температуры проведения процесса выше 530oС приводит к резкому росту скорости окисления стабильного углерода и не позволяет разделить углерод-14 и углерод-12.

Отличительными признаками предложенного способа является нагревание в интервале температур от 450 до 530oС в токе воздуха, дающее новый и неожиданный эффект - увеличение скорости выделения углерода-14 при более низких температурах.

Источники информации

1. Ионизирующее излучение, источники, биологические эффекты. Научный комитет ООН по действию атомной энергии. Доклад за 1982 год Генеральной Ассамблеи, т.1, Нью-Йорк, с.555-557, 1982.

2. W. Davis NRC Report ORNL (NURFG/TM-12 Oak Ridge National Laboratory, NTYS) 1977.

3. Heiner Brucher Atomkernenergie-Kerntechnik, Vol. 44, N 2, 111-114, 1984.

4. Авторское свидетельство 1734497, 20.11.99, бюл. 32, с.20-90.

Класс G21F9/32 прокаливание 

способ кондиционирования твердых органических радиоактивных отходов -  патент 2479877 (20.04.2013)
способ переработки металлической стружки урана и устройство для его осуществления -  патент 2469428 (10.12.2012)
способ обезвреживания радиоактивных органических отходов -  патент 2461902 (20.09.2012)
способ обработки беспламенным горением радиоактивных углеродосодержащих веществ -  патент 2390862 (27.05.2010)
способ утилизации органосодержащих твердых отходов, загрязненных радиоактивными компонентами -  патент 2335700 (10.10.2008)
способ обработки беспламенным горением радиоактивных углеродсодержащих отходов -  патент 2328786 (10.07.2008)
способ обработки почвы, зараженной остатками токсичных веществ в виде соединений мышьяка -  патент 2308104 (10.10.2007)
способ и установка для термической переработки радиоактивных ионообменных смол -  патент 2301467 (20.06.2007)
печь для сжигания радиоактивных отходов -  патент 2260216 (10.09.2005)
способ переработки отходов реакторного графита -  патент 2242814 (20.12.2004)
Наверх